ترغب بنشر مسار تعليمي؟ اضغط هنا

Bispectrum speckle interferometry observations and radiative transfer modelling of the red supergiant NML Cyg: Multiple dust-shell structures evidencing previous superwind phases

92   0   0.0 ( 0 )
 نشر من قبل Thomas Bloecker
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Bloecker




اسأل ChatGPT حول البحث

(abridged) NML Cyg is a highly evolved OH/IR supergiant and supposed to be among the most luminous supergiants in the galaxy. We present the first diffraction limited 2.13micron observations of NML Cyg with 73mas resolution. The speckle interferograms were obtained with the SAO 6m telescope, image reconstruction is based on the bispectrum speckle interferometry method. Radiative transfer calculations have been carried out to model the spectral energy distribution, our 2.13micron visibility function, and mid-infrared visibility functions. The observed dust shell properties do not appear to be in accordance with single-shell models but seem to require multiple components. Considering previous periods of enhanced mass-loss, various density enhancements in the dust shell were taken into account. An extensive grid of models was calculated for different locations and strenghts of such superwind regions in the dust shell. To match the observations from the optical to the sub-mm domain requires at least two superwind regions embedded in the shell. The best model includes a dust shell with a temperature of 1000K at its inner radius of 6.2Rstar, a close embedded superwind shell extending from 15.5Rstar to 21.7Rstar with amplitude 10 (factor of density enhancement), and a far-out density enhancement at 186Rstar with amplitude 5. The angular diameter of the inner dust-shell rim amounts to 105mas. Within the various parts of the dust shell, 1/r^2 density distributions could be maintained differing only in their amplitude A. The present-day mass-loss rate was determined to be 1.2 10^-4 Msol/yr. The inner embedded superwind shell corresponds to a phase of enhanced mass-loss which began ~59yr ago and lasted for ~18yr, and the outer superwind region to a high mass-loss period which terminated 529yr ago.



قيم البحث

اقرأ أيضاً

71 - T. Bloecker 1999
The hypergiant IRC+10420 is a unique object for the study of stellar evolution since it is the only object that is believed to be witnessed in its rapid transition from the red supergiant stage to the Wolf-Rayet phase. Its effective temperature has i ncreased by 1000-2000K within only 20yr. We present the first speckle observations of IRC+10420 with 73mas resolution. A diffraction-limited 2.11 micron image was reconstructed from 6m telescope speckle data using the bispectrum speckle-interferometry method. The visibility function shows that the dust shell contributes 40% to the total flux and the unresolved central object 60%. Radiative transfer calculations have been performed to model both the spectral energy distribution and visibility function. The grain sizes, a, were found to be in accordance with a standard distribution function, n(a)~a^(-3.5), with 0.005 micron < a < 0.45 micron. The observed dust shell properties cannot be fitted by single-shell models but seem to require multiple components. At a certain distance we considered an enhancement over the assumed 1/r^x density distribution. The best model for both SED and visibility was found for a dust shell with a dust temperature of 1000K at its inner radius of 69Rstar. At a distance of 308Rstar the density was enhanced by a factor of 40 and and its density exponent was changed from x=2 to x=1.7. The shells intensity distribution was found to be ring-like.The ring diameter is equal to the inner diameter of the hot shell (69mas). The diameter of the central star is 1mas. The two-component model can be interpreted in terms of a termination of an enhanced mass-loss phase roughly 60 to 90 yr (for d=5kpc) ago.
52 - K.-H. Hofmann 2001
(abridged) CIT 3 is an oxygen-rich long-period variable evolving along the AGB and one of the most extreme infrared AGB objects. We present the first bispectrum speckle-interferometry observations of CIT 3 in the J-, H-, and K-band (resolution: 48mas , 56mas, and 73mas). The interferograms were obtained with the Russian SAO 6m telescope. While CIT 3 appears almost spherically symmetric in the H- and K-band, it is clearly elongated in the J-band along a symmetry axis of position angle -28 degr. Two structures can be identified: a compact elliptical core (eccentricity ~0.8) and a fainter north-western fan-like structure (full opening angle ~40 degr). Extensive radiative transfer calculations have been carried out and confronted with the spectral energy distribution, our 1.24, 1.65 and 2.12 micron visibility functions, and 11micron ISI interferometry. The best model refers to a cool central star (Teff=2250K) surrounded by an optically thick dust shell (tau_V = 30). The central-star diameter is 10.9mas and the inner dust shell diameter 71.9mas. The inner dust-shell rim is located at r_1=6.6 Rstar and has a temperature of T_1=900K. A two-component model existing of an inner uniform-outflow shell region (rho~1/r^2; r < 20.5 r_1) and an outer region with rho ~ 1/r^1.5 proved to give the best overall match of the observations. Provided the outflow velocity kept constant, the more shallow density distribution in the outer shell indicates that mass-loss has decreased with time in the past of CIT 3. Adopting vexp=20km/s, the termination of that mass-loss decrease and the begin of the uniform-outflow phase took place 87yr ago. The present-day mass-loss rate can be determined to be Mdot = (1.3-2.1) x 10^-5 Msol/yr for d=500-800pc.
109 - A. Gauger 1999
We present the first diffraction-limited speckle masking observations of the oxygen-rich AGB star AFGL 2290. The data was obtained with the Russian 6m SAO telescope. At the wavelength of 2.11um a resolution of 75mas was achieved. The reconstructed im age reveals that the CDS of AFGL 2290 is slightly non-spherical. The stellar contribution to the total 2.11um flux is less than ~40%. The 2D Gaussian visibility fit yields a diameter of AFGL 2290 at 2.11um of 43mas x 51mas, corresponding to 42AU x 50AU for an adopted distance of 0.98kpc. Our results provide additional constraints on the CDS of AFGL 2290, which supplement the information from the SED. We have performed radiative transfer calculations for spherically symmetric dust shell models. The observed SED at phase ~0.2 can be well reproduced at all wavelengths by a model with Teff=2000K, a dust temperature of 800K at the inner boundary, an optical depth tau_V=100 and a radius for the single-sized grains of 0.1um. However, the 2.11um visibility of the model does not match the observation. We found that the grain size is the key parameter in achieving a fit of the observed visibility while retaining the match of the SED, at least partially. Both the slope and the curvature of the visibility strongly constrain the possible grain radii. On the other hand, the SED at longer wavelengths, the silicate feature in particular, determines the dust mass loss rate and, thereby, restricts the possible optical depths of the model. With a larger grain size of 0.16um and a higher tau_V=150, the observed visibility can be reproduced preserving the match of the SED at longer wavelengths.
The Galactic Cold Cores (GCC) project has made Herschel observations of interstellar clouds where Planck detected compact sources of cold dust emission. Our aim is to characterise the structure of the clumps and their parent clouds. We also examine t he accuracy to which the structure of dense clumps can be determined from submillimetre data. We use standard statistical methods to characterise the GCC fields. Clumps are extracted using column density thresholding and we construct for each field a three-dimensional radiative transfer (RT) model. These are used to estimate the relative radiation field intensities, clump stability, and the uncertainty of column density estimates. We examine the radial column density profiles of the clumps. In the GCC fields, the structure noise follows the relations previously established at larger scales. The fractal dimension has no significant dependence on column density and the values D = 1.25 +- 0.07 are only slightly lower than in typical molecular clouds. The column density PDFs exhibit large variations, e.g. in the case of externally compressed clouds. At scales r>0.1 pc, the radial column density distributions of the clouds follow an average relation of N~r^{-1}. In spite of a great variety of clump morphology, clumps tend to follow a similar N~r^{-1} relation below r~0.1 pc. RT calculations indicate only factor of 2.5 variation in the local radiation field intensity. The fraction of gravitationally bound clumps increases significantly in regions with A_V > 5 mag but most bound objects appear to be pressure-confined. The GCC host clouds have statistical properties similar to general molecular clouds. The gravitational stability, peak column density, and clump orientation are connected to the cloud background while most other statistics (e.g. D and radial profiles) are insensitive to the environment.
63 - D. Riechers 2004
We present near-infrared speckle interferometry of the OH/IR star OH 104.9+2.4 in the K band obtained with the 6m telescope of the Special Astrophysical Observatory (SAO). At a wavelength of lambda = 2.12 micron the diffraction-limited resolution of 74 mas was attained. The reconstructed visibility reveals a spherically symmetric, circumstellar dust shell (CDS) surrounding the central star. The visibility function shows that the stellar contribution to the total flux at lambda = 2.12 micron is less than ~50%, indicating a rather large optical depth of the CDS. The azimuthally averaged 1-dimensional Gaussian visibility fit yields a diameter of 47 +/- 3mas (FHWM), which corresponds to 112 +/- 13 AU for an adopted distance of D = 2.38 +/- 0.24 kpc. To determine the structure and the properties of the CDS of OH 104.9+2.4, radiative transfer calculations using the code DUSTY were performed to simultaneously model its visibility and the spectral energy distribution (SED). We found that both the ISO spectrum and the visibility of OH 104.9+2.4 can be well reproduced by a radiative transfer model with an effective temperature T_eff = 2500 +/- 500 K of the central source, a dust temperature T_in = 1000 +/- 200 K at the inner shell boundary R_in = 9.1 R_star = 25.4 AU, an optical depth tau = 6.5 +/- 0.3 at 2.2 micron, and dust grain radii ranging from a_min = 0.005 +/- 0.003 micron to a_max = 0.2 +/- 0.02 micron with a power law with index -3.5. It was found that even minor changes in a_max have a major impact on both the slope and the curvature of the visibility function, while the SED shows only minor changes. Our detailed analysis demonstrates the potential of dust shell modeling constrained by both the SED and visibilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا