ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared constraints on the dark mass concentration observed in the cluster Abell 1942

43   0   0.0 ( 0 )
 نشر من قبل Meghan Gray
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Meghan E. Gray




اسأل ChatGPT حول البحث

We present a deep H-band image of the region in the vicinity of the cluster Abell 1942 containing the puzzling dark matter concentration detected in an optical weak lensing study by Erben et al. (2000). We demonstrate that our limiting magnitude, H=22, would be sufficient to detect clusters of appropriate mass out to redshifts comparable with the mean redshift of the background sources. Despite this, our infrared image reveals no obvious overdensity of sources at the location of the lensing mass peak, nor an excess of sources in the I-H vs. H colour-magnitude diagram. We use this to further constrain the luminosity and mass-to-light ratio of the putative dark clump as a function of its redshift. We find that for spatially-flat cosmologies, background lensing clusters with reasonable mass-to-light ratios lying in the redshift range 0<z<1 are strongly excluded, leaving open the possibility that the mass concentration is a new type of truly dark object.

قيم البحث

اقرأ أيضاً

381 - H.V. Capelato 2008
We present a dynamical analysis of the galaxy cluster Abell 1942 based on a set of 128 velocities obtained at the European Southern Observatory. Data on individual galaxies are presented and the accuracy of the determined velocities is discussed as w ell as some properties of the cluster. We have also made use of publicly available Chandra X-ray data. We obtained an improved mean redshift value z = 0.22513 pm 0.0008 and velocity dispersion sigma = 908^{+147}_{-139} km/s. Our analysis indicates that inside a radius of ~1.5 h_{70}^{-1} Mpc (~7 arcmin) the cluster is well relaxed, without any remarkable feature and the X-ray emission traces fairly well the galaxy distribution. Two possible optical substructures are seen at ~5 arcmin from the centre towards the Northwest and the Southwest direction, but are not confirmed by the velocity field. These clumps are however, kinematically bound to the main structure of Abell 1942. X-ray spectroscopic analysis of Chandra data resulted in a temperature kT = 5.5 pm 0.5 keV and metal abundance Z = 0.33 pm 0.15 Z_odot. The velocity dispersion corresponding to this temperature using the T_X-sigma scaling relation is in good agreement with the measured galaxies velocities. Our photometric redshift analysis suggests that the weak lensing signal observed at the south of the cluster and previously attributed to a dark clump, is produced by background sources, possibly distributed as a filamentary structure.
Merging clusters of galaxies are unique in their power to directly probe and place limits on the self-interaction cross-section of dark matter. Detailed observations of several merging clusters have shown the intracluster gas to be displaced from the centroids of dark matter and galaxy density by ram pressure, while the latter components are spatially coincident, consistent with collisionless dark matter. This has been used to place upper limits on the dark matter particle self-inteaction cross-section of order 1 cm^2/g. The cluster Abell 520 has been seen as a possible exception. We revisit A520 presenting new HST ACS mosaic images and a Magellan image set. We perform a detailed weak lensing analysis and show that the weak lensing mass measurements and morphologies of the core galaxy-filled structures are mostly in good agreement with previous works. There is however one significant difference -- we do not detect the previously claimed dark core that contains excess mass with no significant galaxy overdensity at the location of the X-ray plasma. This peak has been suggested to be indicative of a large self-interaction cross-section for dark matter (at least ~5 sigma larger than the upper limit of 0.7 cm^2/g determined by observations of the Bullet Cluster). We find no such indication and instead find that the mass distribution of A520, after subtraction of the X-ray plasma mass, is in good agreement with the luminosity distribution of the cluster galaxies. We conclude that A520 shows no evidence to contradict the collisionless dark matter scenario.
We precisely constrain the inner mass profile of Abell 2261 (z=0.225) for the first time and determine this cluster is not over-concentrated as found previously, implying a formation time in agreement with {Lambda}CDM expectations. These results are based on strong lensing analyses of new 16-band HST imaging obtained as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). Combining this with revised weak lensing analyses of Subaru wide field imaging with 5-band Subaru + KPNO photometry, we place tight new constraints on the halo virial mass M_vir = 2.2pm0.2times10^15 Modot/h70 (within r approx 3 Mpc/h70) and concentration c = 6.2 pm 0.3 when assuming a spherical halo. This agrees broadly with average c(M,z) predictions from recent {Lambda}CDM simulations which span 5 <~ <c> <~ 8. Our most significant systematic uncertainty is halo elongation along the line of sight. To estimate this, we also derive a mass profile based on archival Chandra X-ray observations and find it to be ~35% lower than our lensing-derived profile at r2500 ~ 600 kpc. Agreement can be achieved by a halo elongated with a ~2:1 axis ratio along our line of sight. For this elongated halo model, we find M_vir = 1.7pm0.2times10^15 Modot/h70 and c_vir = 4.6pm0.2, placing rough lower limits on these values. The need for halo elongation can be partially obviated by non-thermal pressure support and, perhaps entirely, by systematic errors in the X-ray mass measurements. We estimate the effect of background structures based on MMT/Hectospec spectroscopic redshifts and find these tend to lower Mvir further by ~7% and increase cvir by ~5%.
Lauer & Postman (LP) observe that all Abell clusters with redshifts less than 15,000kms appear to be participating in a bulk flow of 689 km s$^{-1}$ with respect to the Cosmic Microwave Background. We find this result difficult to reconcile with all popular models for large-scale structure formation that assume Gaussian initial conditions. This conclusion is based on Monte-Carlo realizations of the LP data, drawn from large Particle-Mesh $N$-body simulations. We have taken special care to treat properly the longest-wavelength components of the power spectra. Bulk flows with amplitude as large as that reported by LP are not uncommon in the Monte-Carlo datasets. However, the $chi^2$ of the observed bulk flow, taking into account the anisotropy of the error ellipsoid, is much more difficult to match in the simulations. The models examined are ruled out at confidence levels between 94% and 98%. Any model that has {it intrinsic} flows of less than 480kms on the scales probed by LP scales can be ruled out at a similar level.
We observed the brightest central galaxy (BCG) in the nearby (z=0.0821) cool core galaxy cluster Abell 2597 with the IRAC and MIPS instruments on board the Spitzer Space Telescope. The BCG was clearly detected in all Spitzer bandpasses, including the 70 and 160 micron wavebands. We report aperture photometry of the BCG. The spectral energy distribution exhibits a clear excess in the FIR over a Rayleigh-Jeans stellar tail, indicating a star formation rate of ~4-5 solar masses per year, consistent with the estimates from the UV and its H-alpha luminosity. This large FIR luminosity is consistent with that of a starburst or a Luminous Infrared Galaxy (LIRG), but together with a very massive and old population of stars that dominate the energy output of the galaxy. If the dust is at one temperature, the ratio of 70 to 160 micron fluxes indicate that the dust emitting mid-IR in this source is somewhat hotter than the dust emitting mid-IR in two BCGs at higher-redshift (z~0.2-0.3) and higher FIR luminosities observed earlier by Spitzer, in clusters Abell 1835 and Zwicky 3146.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا