ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mass and Structure of the Pleiades Star Cluster from 2MASS

32   0   0.0 ( 0 )
 نشر من قبل Joseph D. Adams
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a large scale search for new members of the Pleiades star cluster using 2MASS near-infrared photometry and proper motions derived from POSS plates digitized by the USNO PMM program. The search extends to a 10 degree radius around the cluster, well beyond the presumed tidal radius, to a limiting magnitude of R ~ 20, corresponding to ~ 0.07 M_sun at the distance and age of the Pleiades. Multi-object spectroscopy for 528 candidates verifies that the search was extremely effective at detecting cluster stars in the 1 - 0.1 M_sun mass range using the distribution of H_alpha emission strengths as an estimate of sample contamination by field stars. When combined with previously identified, higher mass stars, this search provides a sensitive measurement of the stellar mass function and dynamical structure of the Pleiades. The degree of tidal elongation of the halo agrees well with current N body simulation results. Tidal truncation affects masses below ~ 1 M_sun. The cluster contains a total mass ~ 800 M_sun. Evidence for a flatter mass function in the core than in the halo indicates the depletion of stars in the core with mass less than ~ 0.5 M_sun, relative to stars with mass ~1 - 0.5 M_sun, and implies a preference for very low mass objects to populate the halo or escape. The overall mass function is best fitted with a lognormal form that becomes flat at ~ 0.1 M_sun. Whether sufficient dynamical evaporation has occurred to detectably flatten the initial mass function, via preferential escape of very low mass stars and brown dwarfs, is undetermined, pending better membership information for stars at large radial distances.

قيم البحث

اقرأ أيضاً

We present optical photometry (i- and Z-band) and low-resolution spectroscopy (640-1015 nm) of very faint candidate members (J = 20.2-21.2 mag) of the Pleiades star cluster (120 Myr). The main goal is to address their cluster membership via photometr ic, astrometric, and spectroscopic studies, and to determine the properties of the least massive population of the cluster through the comparison of the data with younger and older spectral counterparts and state-of-the art model atmospheres. We confirm three bona-fide Pleiades members that have extremely red optical and infrared colors, effective temperatures of ~1150 K and ~1350 K, and masses in the interval 11-20 Mjup, and one additional likely member that shares the same motion as the cluster but does not appear to be as red as the other members with similar brightness. This latter object requires further near-infrared spectroscopy to fully address its membership in the Pleiades. The optical spectra of two bona-fide members were classified as L6-L7 and show features of KI, a tentative detection of CsI, hydrides and water vapor with an intensity similar to high-gravity dwarfs of related classification despite their young age. The properties of the Pleiades L6-L7 members clearly indicate that very red colors of L dwarfs are not a direct evidence of ages younger than ~100 Myr. We also report on the determination of the bolometric corrections for the coolest Pleiades members. These data can be used to interpret the observations of the atmospheres of exoplanets orbiting stars.
We derive structural parameters and evidence for extended tidal debris from star count and preliminary standard candle analyses of the Large Magellanic Cloud based on Two Micron All Sky Survey (2MASS) data. The full-sky coverage and low extinction in K_s presents an ideal sample for structural analysis of the LMC. The star count surface densities and deprojected inclination for both young and older populations are consistent with previous work. We use the full areal coverage and large LMC diameter to Galactrocentric distance ratio to infer the same value for the disk inclination based on perspective. A standard candle analysis based on a sample of carbon long-period variables (LPV) in a narrow color range, 1.6<J-K_s<1.7 allows us to probe the three-dimensional structure of the LMC along the line of sight. The intrinsic brightness distribution of carbon LPVs in selected fields implies that $sigma_Msimlt 0.2^m$ for this color cut. The sample provides a {it direct} determination of the LMC disk inclination: $42.3^circpm 7.2^circ$. Distinct features in the photometric distribution suggest several distinct populations. We interpret this as the presence of an extended stellar component of the LMC, which may be as thick as 14 kpc, and intervening tidal debris at roughly 15 kpc from the LMC.
120 - H. Bouy , E. Bertin , L.M. Sarro 2015
The DANCe survey provides photometric and astrometric (position and proper motion) measurements for approximately 2 millions unique sources in a region encompassing $approx$80deg$^{2}$ centered around the Pleiades cluster. We aim at deriving a comp lete census of the Pleiades, and measure the mass and luminosity function of the cluster. Using the probabilistic selection method described in Sarro+2014, we identify high probability members in the DANCe ($ige$14mag) and Tycho-2 ($Vlesssim$12mag) catalogues, and study the properties of the cluster over the corresponding luminosity range. We find a total of 2109 high probability members, of which 812 are new, making it the most extensive and complete census of the cluster to date. The luminosity and mass functions of the cluster are computed from the most massive members down to $approx$0.025M$_{odot}$. The size, sensitivity and quality of the sample result in the most precise luminosity and mass functions observed to date for a cluster. Our census supersedes previous studies of the Pleiades cluster populations, both in terms of sensitivity and accuracy.
A study of cluster characteristics and internal kinematical structure of the middle-aged Pleiades open star cluster is presented. The individual star apexes and various cluster kinematical parameters including the velocity ellipsoid parameters are de termined using both Hipparcos and Gaia data. Modern astrometric parameters were taken from the Gaia Data Release 1 (DR1) in combination with the Radial Velocity Experiment Fifth Data Release (DR5). The necessary set of parameters including parallaxes, proper motions and radial velocities are used for n=17 stars from Gaia DR1+RAVE DR5 and for n=19 stars from the Hipparcos catalog using SIMBAD data base. Single stars are used to improve accuracy by eliminating orbital movements. RAVE DR5 measurements were taken only for the stars with the radial velocity errors not exceeding $2$~km/s. For the Pleiades stars taken from Gaia, we found mean heliocentric distance as $136.8 pm 6.4$~pc, and the apex position is calculated as: $A_{CP}=92^circ.52pm1^circ.72$, $D_{CP}=-42^circ.28pm2^circ.56$ by the convergent point method and $A_0=95^circ.59pm2^circ.30$ and $D_0=-50^circ.90pm2^circ.04$ using AD-diagram method (n=17 in both cases). The results are compared with those obtained historically before the Gaia mission era.
An overall analysis of the structure and stellar content of M11 is presented, thanks to the wide-angle 2MASS spatial coverage. We derive photometric and structural parameters and discuss the spatial dependance of the luminosity and mass functions. Ph otometric parameters basically agree with previous ones mostly based on the optical. We obtained a core radius of 1.23pc and a tidal radius of 29pc. In particular, the cluster is populous enough so that the tidal radius could be obtained by fitting the three-parameter King profile to the radial distribution of stars. We analyzed the spatial distribution of mass functions, finding that the the slope changes from -0.73 in the core to +2.88 in the outer halo. The spatial distribution of mass function slopes derived from 2MASS agrees with that derived from optical CCD data, which further confirms the reliability of 2MASS data for future analyses of this kind at comparable observational limits. We detect mass segregation up to distances from the center of ~20arcmin. We emphasize that the mass function slope in the core is flatter than anywhere else as a consequence of mass segregation. The derived total cluster mass is ~11000 solar masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا