ﻻ يوجد ملخص باللغة العربية
Based on a uniform dynamical analysis of line-profile shapes for 21 luminous round elliptical galaxies, we have investigated the dynamical family relations of ellipticals: (i) The circular velocity curves (CVCs) of elliptical galaxies are flat to within ~10% for R>~0.2R_e. (ii) Most ellipticals are moderately radially anisotropic; their dynamical structure is surprisingly uniform. (iii) Elliptical galaxies follow a Tully-Fisher (TF) relation, with v_c^max=300 km/s for an L_B^* galaxy. At given v_c^max, they are ~1 mag fainter in B and appear to have slightly lower baryonic mass than spirals even for maximum M/L_B. (iv) The luminosity dependence of M/L_B is confirmed. The tilt of the Fundamental Plane is not caused by dynamical non-homology, nor only by an increasing dark matter fraction with L. It is, however, consistent with stellar population models based on published metallicities and ages. The main driver is therefore probably metallicity, and a secondary population effect is needed to explain the K-band tilt. (v) These results make it likely that elliptical galaxies have nearly maximal M/L_B (minimal halos). (vi) Despite the uniformly flat CVCs, there is a spread in cumulative M/L_B(r). Some galaxies have no indication for dark matter within 2R_e, whereas others have local M/L_Bs of 20-30 at 2R_e. (vii) In models with maximum stellar mass, the dark matter contributes ~10-40% of the mass within R_e. (viii) The corresponding halo core densities and phase-space densities are at least ~25 times larger and the halo core radii ~4 times smaller than in spiral galaxies of the same v_c^max. The increase in M/L sets in at ~10 times larger acceleration than in spirals. This could imply that elliptical galaxy halos collapsed at high redshift or that some of the dark matter in ellipticals might be baryonic. (abridged)
(ABRIDGED) We examine the fundamental scaling relations of elliptical galaxies formed through mergers. Using hundreds of simulations to judge the impact of progenitor galaxy properties on merger remnants, we find that gas dissipation provides an impo
We investigate the black hole (BH) scaling relation in galaxies using a model in which the galaxy halo and central BH are a self-gravitating sphere of dark matter (DM) with an isotropic, adiabatic equation of state. The equipotential where the escape
I review our understanding of classic dynamical scaling relations, relating luminosity, size and kinematics of early-type galaxies. Using unbiased determinations of galaxy mass profiles from stellar dynamical models, a simple picture has emerged in w
Given the recently deduced relationship between X-ray temperatures and stellar velocity dispersions (the T-sigma relation) in an optically complete sample of elliptical galaxies (Davis & White 1996), we demonstrate that L>L_* ellipticals contain subs
Dynamical modeling and strong lensing data indicate that the total density profiles of early-type galaxies are close to isothermal, i.e., rho_tot ~ r^gamma with gamma approx -2. To understand the origin of this universal slope we study a set of simul