ﻻ يوجد ملخص باللغة العربية
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star-formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about 2.0e7 dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N-body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology-radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.
In this work, we present results for the photometric and clustering properties of galaxies that arise in a LambdaCDM hydrodynamical simulation of the local universe. The present-day distribution of matter was constructed to match the observed large s
We present HST/WFPC2 observations of the five bluest E+A galaxies (z~0.1) in the Zabludoff et al. sample to study whether their detailed morphologies are consistent with late-to-early type evolution and to determine what drives that evolution. The mo
We examine the distribution of stellar masses of galaxies in MS 1054-03 and RX J0152.7-1357, two X-ray selected clusters of galaxies at z=0.83. Our stellar mass estimates, from spectral energy distribution fitting, reproduce the dynamical masses as m
Spatially resolved velocity profiles are presented for nine faint field galaxies in the redshift range 0.1 < z < 1, based on moderate-resolution spectroscopy obtained with the Keck 10 m telescope. These data were augmented with high-resolution HST im
We present redshift evolution of galaxy effective radius r_e obtained from the HST samples of ~190,000 galaxies at z=0-10. Our HST samples consist of 176,152 photo-z galaxies at z=0-6 from the 3D-HST+CANDELS catalogue and 10,454 LBGs at z=4-10 identi