ﻻ يوجد ملخص باللغة العربية
The luminous infrared-loud quasar IRAS 13349+2438 was observed with the XMM-Newton Observatory as part of the Performance Verification program. The spectrum obtained by the Reflection Grating Spectrometer (RGS) exhibits broad (v ~ 1400 km/s FWHM) absorption lines from highly ionized elements including hydrogen- and helium-like carbon, nitrogen, oxygen, and neon, and several iron L-shell ions (Fe XVII - XX). Also shown in the spectrum is the first astrophysical detection of a broad absorption feature around lambda = 16 - 17 Ang identified as an unresolved transition array (UTA) of 2p - 3d inner-shell absorption by iron M-shell ions in a much cooler medium; a feature that might be misidentified as an O VII edge when observed with moderate resolution spectrometers. No absorption edges are clearly detected in the spectrum. We demonstrate that the RGS spectrum of IRAS 13349+2438 exhibits absorption lines from at least two distinct regions, one of which is tentatively associated with the medium that produces the optical/UV reddening.
We present a comparison between Fe K-edge x-ray absorption spectra of carbonmonoxy-myoglobin and its simulation based on density-functional theory determination of the structure and vibrations and spectral simulation with multiple-scattering theory.
We present an analysis of XMM-Newton spectra of the low-redshift quasar IRAS 13349+2438. The RGS spectrum shows a large number of absorption lines from two zones of warm absorption, with velocities of $sim$-600 km s$^{-1}$, as noted by previous autho
GRB 190114C was a bright burst that occurred in the local Universe (z=0.425). It was the first gamma-ray burst (GRB) ever detected at TeV energies, thanks to MAGIC. We characterize the ambient medium properties of the host galaxy through the study of
Archival XMM-Newton data on the nearby Seyfert galaxy NGC 4051, taken in relatively high and low flux states, offer a unique opportunity to explore the complexity of its X-ray spectrum. We find the hard X-ray band to be significantly affected by refl
Oscillatory structure is found in the atomic background absorption in x-ray-absorption fine structure (XAFS). This atomic-XAFS or AXAFS arises from scattering within an embedded atom, and is analogous to the Ramsauer-Townsend effect. Calculations and