ترغب بنشر مسار تعليمي؟ اضغط هنا

UBVRI photometry of Southern Sky BL Lacs

65   0   0.0 ( 0 )
 نشر من قبل Ramotholo R. Sefako
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Seventeen southern sky BL Lacs were observed in UBVRI using the CCD Camera on the 1.0m telescope at the South African Astronomical Observatory (SAAO) in Aug and Nov 1999. The analyses of all the seventeen sources are now complete, and are available via anonymous ftp (ftp pukrs1.puk.ac.za/pub/Blazars). A few examples of our results are however given in this paper. Whereas PKS 2005-489 and PKS 2155-304 apear to have been in a high state, PKS 0048-097 and PKS 0521-365 showed evidence of variability on a time-scale of a few days, with the amplitude of variability increasing towards short wavelengths. This is consistent with observations of gamma-ray BL Lacs, which show similar behaviour in optical and X-rays.

قيم البحث

اقرأ أيضاً

313 - E. Kasai , M. Backes (1 2021
In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the m ore than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum- dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory.
Observational and theoretical results indicate that low-redshift BL Lacertae objects are the most likely extragalactic sources to be detectable at TeV energies. In this paper we present the results of observations of 4 BL Lacertae objects (PKS0521-36 5, EXO0423.4-0840, PKS2005-489 and PKS2316-423) made between 1993 and 1996 with the CANGAROO 3.8m imaging Cherenkov telescope. During the period of these observations the gamma-ray energy threshold of the 3.8m telescope was ~2TeV. Searches for steady long-term emission have been made, and, inspired by the TeV flares detected from Mkn421 and Mkn501, a search on a night-by-night timescale has also been performed for each source. Comprehensive Monte Carlo simulations are used to estimate upper limits for both steady and short timescale emission.
We present the results of CCD UBVRI observations of the open cluster NGC 6811 obtained on 18th July 2012 with the 1m telescope at the TUB.ITAK National Observatory (TUG). Using these photometric results, we determine the structural and astrophysical parameters of the cluster. The mean photometric uncertainties are better than 0.02 mag in the V magnitude and B-V, V-R, and V-I colour indices to about 0.03 mag for U-B among stars brighter than magnitude V=18. Cluster member stars were separated from the field stars using the Galaxia model of Sharma et al. (2011) together with other techniques. The core radius of the cluster is found to be $r_{c}$=3.60 arcmin. The astrophysical parameters were determined simultaneously via Bayesian statistics using the colour-magnitude diagrams V versus B-V, V versus V-I, V versus V-R, and V versus R-I of the cluster. The resulting most likely parameters were further confirmed using independent methods, removing any possible degeneracies. The colour excess, distance modulus, metallicity and the age of the cluster are determined simultaneously as E(B-V)=0.05$pm$0.01 mag, $mu=10.06pm0.08$ mag, [M/H]=-0.10$pm$0.01 dex and t=1.00$pm$0.05 Gyr, respectively. Distances of five red clump stars which were found to be members of the cluster further confirm our distance estimation.
104 - Anna Wolter 2000
Detailed VLA observations have been gathered for a number of sources classified as either BL Lacs or galaxies, derived from the REX survey. We focus in particular on the sources identified by us, for which we have in hand homogeneous optical data, to study in more detail than allowed by the NVSS the radio properties of these sources in the framework of AGN unified models.
Hard-TeV BL Lacs are a new type of blazars characterized by a hard intrinsic TeV spectrum, locating the peak of their gamma-ray emission in the spectral energy distribution (SED) above 2-10 TeV. Such high energies are problematic for the Compton emis sion, using a standard one-zone leptonic model. We study six examples of this new type of BL Lacs in the hard X-ray band with the NuSTAR satellite. Together with simultaneous observations with the SWIFT satellite, we fully constrain the peak of the synchrotron emission in their SED, and test the leptonic synchrotron self-Compton (SSC) model. We confirm the extreme nature of 5 objects also in the synchrotron emission. We do not find evidence of additional emission components in the hard X-ray band. We find that a one-zone SSC model can in principle reproduce the extreme properties of both peaks in the SED, from X-ray up to TeV energies, but at the cost of i) extreme electron energies with very low radiative efficiency, ii) conditions heavily out of equipartition (by 3 to 5 orders of magnitude), and iii) not accounting for the simultaneous UV data, which then should belong to a different emission component, possibly the same as the far-IR (WISE) data. We find evidence of this separation of the UV and X-ray emission in at least two objects. In any case, the TeV electrons must not see the UV or lower-energy photons, even if coming from different zones/populations, or the increased radiative cooling would steepen the VHE spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا