ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Modelling - II. Multi-Wavelength Faint Counts from a Semi-Analytic Model of Galaxy Formation

172   0   0.0 ( 0 )
 نشر من قبل Julien E. G. Devriendt
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J.E.G. Devriendt




اسأل ChatGPT حول البحث

(Abridged) This paper predicts self-consistent faint galaxy counts from the UV to the submm wavelength range. The STARDUST spectral energy distributions described in Devriendt et al. (1999) are embedded within the explicit cosmological framework of a simple semi-analytic model of galaxy formation and evolution. We build a class of models which capture the luminosity budget of the universe through faint galaxy counts and redshift distributions in the whole wavelength range spanned by our spectra. In contrast with a rather stable behaviour in the optical and even in the far-IR, the submm counts are dramatically sensitive to variations in the cosmological parameters and changes in the star formation history. Faint submm counts are more easily accommodated within an open universe with a low value of $Omega_0$, or a flat universe with a non-zero cosmological constant. This study illustrates the implementation of multi-wavelength spectra into a semi-analytic model. In spite of its simplicity, it already provides fair fits of the current data of faint counts, and a physically motivated way of interpolating and extrapolating these data to other wavelengths and fainter flux levels.



قيم البحث

اقرأ أيضاً

131 - C.G. Lacey 2005
We present new results from a multi-wavelength model of galaxy formation, which combines a semi-analytical treatment of the formation of galaxies within the CDM framework with a sophisticated treatment of absorption and emission of radiation by dust. We find that the model, which incorporates a top-heavy IMF in bursts, agrees well with the evolution of the rest-frame far-UV luminosity function over the range z=0-6, with the IR number counts in all bands measured by SPITZER, and with the observed evolution of the mid-IR luminosity function for z=0-2.
We implement a detailed dust model into the L-Galaxies semi-analytical model which includes: injection of dust by type II and type Ia supernovae (SNe) and AGB stars; grain growth in molecular clouds; and destruction due to supernova-induced shocks, s tar formation, and reheating. Our grain growth model follows the dust content in molecular clouds and the inter-cloud medium separately, and allows growth only on pre-existing dust grains. At early times, this can make a significant difference to the dust growth rate. Above $zsim8$, type II SNe are the primary source of dust, whereas below $zsim8$, grain growth in molecular clouds dominates, with the total dust content being dominated by the latter below $zsim6$. However, the detailed history of galaxy formation is important for determining the dust content of any individual galaxy. We introduce a fit to the dust-to-metal (DTM) ratio as a function of metallicity and age, which can be used to deduce the DTM ratio of galaxies at any redshift. At $zlesssim3$, we find a fairly flat mean relation between metallicity and the DTM, and a positive correlation between metallicity and the dust-to-gas (DTG) ratio, in good agreement with the shape and normalisation of the observed relations. We also match the normalisation of the observed stellar mass -- dust mass relation over the redshift range of $0-4$, and to the dust mass function at $z=0$. Our results are important in interpreting observations on the dust content of galaxies across cosmic time, particularly so at high redshift.
68 - Cedric G. Lacey 2015
We present a new version of the GALFORM semi-analytical model of galaxy formation. This brings together several previous developments of GALFORM into a single unified model, including a different initial mass function (IMF) in quiescent star formatio n and in starbursts, feedback from active galactic nuclei supressing gas cooling in massive halos, and a new empirical star formation law in galaxy disks based on their molecular gas content. In addition, we have updated the cosmology, introduced a more accurate treatment of dynamical friction acting on satellite galaxies, and updated the stellar population model. The new model is able to simultaneously explain both the observed evolution of the K-band luminosity function and stellar mass function, and the number counts and redshift distribution of sub-mm galaxies selected at 850 mu. This was not previously achieved by a single physical model within the LambdaCDM framework, but requires having an IMF in starbursts that is somewhat top-heavy. The new model is tested against a wide variety of observational data covering wavelengths from the far-UV to sub-mm, and redshifts from z=0 to z=6, and is found to be generally successful. These observations include the optical and near-IR luminosity functions, HI mass function, fraction of early type galaxies, Tully-Fisher, metallicity-luminosity and size-luminosity relations at z=0, as well as far-IR number counts, and far-UV luminosity functions at z ~ 3-6. [abridged]
A semi-analytic model is proposed that couples the Press-Schechter formalism for the number of galaxies with a prescription for galaxy-galaxy interactions that enables to follow the evolution of galaxy morphologies along the Hubble sequence. Within t his framework, we calculate the chemo-spectrophotometric evolution of galaxies to obtain spectral energy distributions. We find that such an approach is very successful in reproducing the statistical properties of galaxies as well as their time evolution. We are able to make predictions as a function of galaxy type: for clarity, we restrict ourselves to two categories of galaxies: early and late types that are identified with ellipticals and disks. In our model, irregulars are simply an early stage of galaxy formation. In particular, we obtain good matches for the galaxy counts and redshift distributions of sources from UV to submm wavelengths. We also reproduce the observed cosmic star formation history and the diffuse background radiation, and make predictions as to the epoch and wavelength at which the dust-shrouded star formation of spheroids begins to dominate over the star formation that occurs more quiescently in disks. A new prediction of our model is a rise in the FIR luminosity density with increasing redshift, peaking at about $zsim 3$, and with a ratio to the local luminosity density $rho_{L, u} (z = z_{peak})/ rho_{L, u} (z = 0)$ about 10 times higher than that in the blue (B-band) which peaks near $zsim 2$.
We construct the Numerical Galaxy Catalog ($ u$GC), based on a semi-analytic model of galaxy formation combined with high-resolution N-body simulations in a $Lambda$-dominated flat cold dark matter ($Lambda$CDM) cosmological model. The model includes several essential ingredients for galaxy formation, such as merging histories of dark halos directly taken from N-body simulations, radiative gas cooling, star formation, heating by supernova explosions (supernova feedback), mergers of galaxies, population synthesis, and extinction by internal dust and intervening HI clouds. As the first paper in a series using this model, we focus on basic photometric, structural and kinematical properties of galaxies at present and high redshifts. Two sets of model parameters are examined, strong and weak supernova feedback models, which are in good agreement with observational luminosity functions of local galaxies in a range of observational uncertainty. Both models agree well with many observations such as cold gas mass-to-stellar luminosity ratios of spiral galaxies, HI mass functions, galaxy sizes, faint galaxy number counts and photometric redshift distributions in optical pass-bands, isophotal angular sizes, and cosmic star formation rates. In particular, the strong supernova feedback model is in much better agreement with near-infrared (K-band) faint galaxy number counts and redshift distribution than the weak feedback model and our previous semi-analytic models based on the extended Press-Schechter formalism. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا