ترغب بنشر مسار تعليمي؟ اضغط هنا

The Assembly and Evolution of Spiral Disks

72   0   0.0 ( 0 )
 نشر من قبل Matthew A. Bershady
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Matthew Bershady




اسأل ChatGPT حول البحث

We explore how the growth rate of spiral disks can be measured via analyses of the scatter in the Tully-Fisher (TF) relation of local and intermediate redshift galaxies. As an initial step, we show it is possible to construct a low-dispersion TF relation for nearly face-on, nearby spirals. We find these spiral disks are non-circular, (a mean ellipticity of 6%), which accounts for about 0.1 mag of the intrinsic scatter in the nearby TF relation of even the most ``normal looking spirals. If this ellipticity is induced by matter accretion, we expect to find greater disk ellipticity or disturbance in the past. We find evidence that more extreme outliers of the intermediate-redshift TF relation are more morphologically and kinematically disturbed. Whether this effect reflects a redshift trend or selection bias of local samples needs to be addressed.

قيم البحث

اقرأ أيضاً

We report on aspects of an observational study to probe the mass assembly of large galaxy disks. In this contribution we focus on a new survey of integral-field H-alpha velocity-maps of nearby, face on disks. Preliminary results yield disk asymmetry amplitudes consistent with estimates based on the scatter in the local Tully-Fisher relation. We also show how the high quality of integral-field echelle spectroscopy enables determinations of kinematic inclinations to i~20 deg. This holds the promise that nearly-face-on galaxies can be included in the Tully-Fisher relation. Finally, we discuss the prospects for measuring dynamical asymmetries of distant galaxies.
The opacity of a spiral disk due to dust absorption influences every measurement we make of it in the UV and optical. Two separate techniques directly measure the total absorption by dust in the disk: calibrated distant galaxy counts and overlapping galaxy pairs. The main results from both so far are a semi-transparent disk with more opaque arms, and a relation between surface brightness and disk opacity. In the Spitzer era, SED models of spiral disks add a new perspective on the role of dust in spiral disks. Combined with the overall opacity from galaxy counts, they yield a typical optical depth of the dusty ISM clouds: 0.4 that implies a size of $sim$ 60 pc. Work on galaxy counts is currently ongoing on the ACS fields of M51, M101 and M81. Occulting galaxies offer the possibility of probing the history of disk opacity from higher redshift pairs. Evolution in disk opacity could influence distance measurements (SN1a, Tully-Fisher relation). Here, we present first results from spectroscopically selected occulting pairs in the SDSS. The redshift range for this sample is limited, but does offer a first insight into disk opacity evolution as well as a reference for higher redshift measurements. Spiral disk opacity has not undergone significant evolution since z=0.2. HST imaging would help disentangle the effects of spiral arms in these pairs. Many more mixed-morphology types are being identified in SDSS by the GalaxyZoo project. The occulting galaxy technique can be pushed to a redshift of 1 using many pairs identified in the imaging campaigns with HST (DEEP2, GEMS, GOODS, COSMOS).
The opacity of a spiral disk due to dust absorption influences every measurement we make of it in the UV and optical. Two separate techniques directly measure the total absorption by dust in the disk: calibrated distant galaxy counts and overlapping galaxy pairs. The main results from both so far are a semi-transparent disk with more opaque arms, and a relation between surface brightness and disk opacity. In the Spitzer era, SED models of spiral disks add a new perspective on the role of dust in spiral disks. Combined with the overall opacity from galaxy counts, they yield a typical optical depth of the dusty ISM clouds: 0.4 that implies a size of ~60 pc. Work on galaxy counts is currently ongoing on the ACS fields of M51, M101 and M81. Occulting galaxies offer the possibility of probing the history of disk opacity from higher redshift pairs. Evolution in disk opacity could influence distance measurements (SN1a, Tully-Fisher relation). Here, we present first results from spectroscopically selected occulting pairs in the SDSS. The redshift range for this sample is limited, but does offer a first insight into disk opacity evolution as well as a reference for higher redshift measurements.
We use multi-wavelength data from the Galaxy and Mass Assembly (GAMA) survey to explore the cause of red optical colours in nearby (0.002<z<0.06) spiral galaxies. We show that the colours of red spiral galaxies are a direct consequence of some enviro nment-related mechanism(s) which has removed dust and gas, leading to a lower star formation rate. We conclude that this process acts on long timescales (several Gyr) due to a lack of morphological transformation associated with the transition in optical colour. The sSFR and dust-to-stellar mass ratio of red spiral galaxies is found to be statistically lower than blue spiral galaxies. On the other hand, red spirals are on average $0.9$ dex more massive, and reside in environments 2.6 times denser than their blue counterparts. We find no evidence of excessive nuclear activity, or higher inclination angles to support these as the major causes for the red optical colours seen in >= 47% of all spirals in our sample. Furthermore, for a small subsample of our spiral galaxies which are detected in HI, we find that the SFR of gas-rich red spiral galaxies is lower by ~1 dex than their blue counterparts.
We investigate recent star formation in the extended ultraviolet (XUV) disks of five nearby galaxies (NGC 0628, NGC 2090, NGC 2841, NGC 3621, and NGC 5055) using a long wavelength baseline comprised of ultraviolet and mid-infrared imaging from the Ga laxy Evolution Explorer and the Spitzer Infrared Array Camera. We identify 229 unresolved stellar complexes across targeted portions of their XUV disks and utilize spectral energy distribution fitting to measure their stellar ages and masses through comparison with Starburst99 population synthesis models of instantaneous burst populations. We find that the median age of outer disk associations in our sample is ~100 Myr with a large dispersion that spans the entire range of our models (1 Myr-1 Gyr). This relatively evolved state for most associations addresses the observed dearth of Halpha emission in some outer disks, as Halpha can only be observed in star forming regions younger than ~10 Myr. The large age dispersion is robust against variations in extinction (in the range E(B-V)=0-0.3 mag) and variations in the upper end of the stellar Initial Mass Function (IMF). In particular, we demonstrate that the age dispersion is insensitive to steepening of the IMF, up to extreme slopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا