ترغب بنشر مسار تعليمي؟ اضغط هنا

Axisymmetry in proto-planetary nebulae: using imaging polarimetry to investigate envelope structure

69   0   0.0 ( 0 )
 نشر من قبل Dr. Tim Gledhill
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use ground-based imaging polarimetry to detect and image the dusty circumstellar envelopes of a sample of proto-planetary nebulae (PPNe) at near-infrared wavelengths. We detect extended (up to 9 arcsec diameter) circumstellar envelopes around 15 out of 16 sources with a range of morphologies including bipolars and shells. The distribution of scattered light in combination with its polarization (up to 40 per cent) provides unambiguous evidence for axisymmetry in 14 objects showing this to be a common trait of PPNe. We suggest that the range of observed envelope morphologies results from the development of an axisymmetric dust distribution during the superwind phase at the end of the AGB. We identify shells seen in polarized light with scattering from these superwind dust distributions which allows us to provide constraints on the duration of the superwind phase. In one object (IRAS 19475+3119) the circumstellar envelope has a two-armed spiral structure which we suggest results from the interaction of the mass losing star with a binary companion.

قيم البحث

اقرأ أيضاً

We compute successfully the launching of two magnetic winds from two circumbinary disks formed after a common envelope event. The launching is produced by the increase of magnetic pressure due to the collapse of the disks. The collapse is due to inte rnal torques produced by a weak poloidal magnetic field. The first wind can be described as a wide jet, with an average mass-loss rate of $sim 1.3 times 10^{-7}$ Moy and a maximum radial velocity of $sim 230$ kms. The outflow has a half-opening angle of $sim 20^{circ}$. Narrow jets are also formed intermittently with velocities up to 3,000 kms, with mass-loss rates of $sim 6 times 10^{-12} $ Moy during short periods of time. The second wind can be described as a wide X-wind, with an average mass-loss rate of $sim 1.68 times 10^{-7}$ Moy and a velocity of $sim 30$ kms. A narrow jet is also formed with a velocity of 250 kms, and a mass-loss rates of $sim 10^{-12} $ Moy. The computed jets are used to provide inflow boundary conditions for simulations of proto-planetary nebulae. The wide jet evolves into a molecular collimated outflow within a few astronomical units, producing proto-planetary nebulae with bipolar, elongated shapes, whose kinetic energies reach $sim 4 times 10^{45}$ erg at 1,000 years. Similarities with observed features in W43A, OH231.8+4.2, and Hen 3-1475 are discussed. The computed wide X-wind produces proto-planetary nebulae with slower expansion velocities, with bipolar and elliptical shapes, and possible starfish type and quadrupolar morphology.
With the aim to investigate the overall evolution of UIR band features with hardening of UV radiation (increase of the stars effective temperature) we have analysed ISO spectra for 32 C-rich stars: 20 proto-planetary nebulae and 12 planetary nebulae with Wolf-Rayet central stars. In this contribution we discuss variations in the peak position of UIR bands among analysed objects, and demonstrate that variations in the ``7.7 to 11.3 microns flux ratio are correlated with the effective temperature (probably due to an increase of the ionization state of their carriers).
The morphology of planetary nebulae emerging from the common envelope phase of binary star evolution is investigated. Using initial conditions based on the numerical results of hydrodynamical simulations of the common envelope phase it is found that the shapes and sizes of the resulting nebula are very sensitive to the effective temperature of the remnant core, the mass-loss rate at the onset of the common envelope phase, and the mass ratio of the binary system. These parameters are related to the efficiency of the mass ejection after the spiral-in phase, the stellar evolutionary phase (i.e., RG, AGB or TP-AGB), and the degree of departure from spherical symmetry in the stellar wind mass loss process itself respectively. It is found that the shapes are mostly bipolar in the early phase of evolution, but can quickly transition to elliptical and barrel-type shapes. Solutions for nested lobes are found where the outer lobes are usually bipolar and the inner lobes are elliptical, bipolar or barrel-type, a result due to the flow of the photo-evaporated gas from the equatorial region. It is found that the lobes can be produced without the need for two distinct mass ejection events. In all the computations, the bulk of the mass is concentrated in the orbital or equatorial plane, in the form of a large toroid, which can be either neutral (early phases) or photoionized (late phases), depending of the evolutionary state of the system.
105 - J. Alcolea 1999
We present our recent results on mm-wave CO observations of proto-planetary nebulae. These include high-resolution interferometric maps of various CO lines in three well known bipolar PPNe: M1-92, M2-56 and OH231.8+4.2. The global properties of the h igh velocity molecular emission in post-AGB sources have been also studied, by means of high-sensitivity single dish observations of the J=1-0 and 2-1 lines of 12CO and 13CO. We discuss the implications of these results to constrain the origin of the post-AGB molecular high-velocity winds and the shaping of bipolar PPNe and PNe. In addition, we also present the results of an interferometric map of the molecular envelope around the luminous high-latitude star 89 Her, a low mass post-AGB source which is also a close binary system.
125 - Richard A. Shaw 2011
A revival over the past two decades in planetary nebula (PN) morphological studies springs from a combination of factors, including the advent of wide-area, high dynamic range detectors; the growing archives of high resolution images from the X-ray t o the sub-mm; and the advent of sophisticated models of the co-evolution of PNe and their central stars. Yet the story of PN formation from their immediate precursors, the AGB stars, is not yet fully written. PN morphology continues to inspire, provide context for physical interpretation, and serve as an ultimate standard of comparison for many investigations in this area of astrophysics. After a brief review of the remarkable successes of PN morphology, I summarize how this tool has been employed over the last half-decade to advance our understanding of PNe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا