ﻻ يوجد ملخص باللغة العربية
We investigate the power of geometrical estimators on detecting non-Gaussianity in the cosmic microwave background. In particular the number, eccentricity and Gaussian curvature of excursion sets above (and below) a threshold are studied. We compare their different performance when applied to non-Gaussian simulated maps of small patches of the sky, which take into account the angular resolution and instrumental noise of the Planck satellite. These non-Gaussian simulations are obtained as perturbations of a Gaussian field in two different ways which introduce a small level of skewness or kurtosis in the distribution. A comparison with a classical estimator, the genus, is also shown. We find that the Gaussian curvature is the best of our estimators in all the considered cases. Therefore we propose the use of this quantity as a particularly useful test to look for non-Gaussianity in the CMB.
We propose a fast and efficient bispectrum statistic for Cosmic Microwave Background (CMB) temperature anisotropies to constrain the amplitude of the primordial non-Gaussian signal measured in terms of the non-linear coupling parameter f_NL. We show
The leading candidate for the very early universe is described by a period of rapid expansion known as inflation. While the standard paradigm invokes a single slow-rolling field, many different models may be constructed which fit the current observat
We introduce the numbers of hot and cold spots, $n_h$ and $n_c$, of excursion sets of the CMB temperature anisotropy maps as statistical observables that can discriminate different non-Gaussian models. We numerically compute them from simulations of
The non-Gaussianity of inflationary perturbations, as encoded in the bispectrum (or 3-point correlator), has become an important additional way of distinguishing between inflation models, going beyond the linear Gaussian perturbation quantities of th
We investigate the use of wavelet transforms in detecting and characterising non-Gaussian structure in maps of the cosmic microwave background (CMB). We apply the method to simulated maps of the Kaiser-Stebbins effect due to cosmic strings onto which