ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral analysis of multi mode pulsating sdB stars II. Feige 48, KPD 2109+4401 and PG 1219+534

367   0   0.0 ( 0 )
 نشر من قبل Heber
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Three members of the new class of pulsating sdB stars (sdBV or EC 14026 stars) are analysed from Keck HIRES spectra using line blanketed NLTE and LTE model atmospheres. Atmospheric parameters (Teff, log g, He/H), metal abundances and rotational velocities are determined. As is typical for sdB stars, all programme stars are found to be helium deficient, with a He abundance ranging from 1/80 solar for Feige 48 to 1/3 solar for PG 1219+534, probably due to diffusion. Most metals are also depleted. The abundances of C, O, Ne, Mg, Al and Si in the high gravity programme stars KPD 2109+4401 and PG 1219+534 are considerably lower than in the lower gravity stars Feige 48 and PG 1605+072 which could be explained by an equilibrium between gravitational settling and radiative levitation. Surprisingly iron is solar to within error limits in all programme stars irrespective of their gravity, confirming predictions from diffusion calculations. The metal lines are very sharp and allow the microturbulent velocity to be constrained to be lower than 5km/s (KPD2109+4401, PG 1219+534). Also the projected rotational velocities have to be very low (vrot sini<10km/s). For Feige 48 the limits are even tighter (vmicro<=3km/s, vrot sini<=5km/s).

قيم البحث

اقرأ أيضاً

Four members of the new class of pulsating sdB stars are analysed from Keck HIRES spectra using NLTE and LTE model atmospheres. Atmospheric parameters (Teff, log g, log(He/H)), metal abundances and rotational velocities are determined. Balmer line fi tting is found to be consistent with the helium ionization equilibrium for PG1605+072 but not so for PG1219+534 indicating that systematic errors in the model atmosphere analysis of the latter have been underestimated previously. All stars are found to be helium deficient probably due to diffusion. The metals are also depleted with the notable exception of iron which is solar to within error limits in all four stars, confirming predictions from diffusion calculations of Charpinet et al. (1997). While three of them are slow rotators (vsini < 10km/s), PG1605+072 displays considerable rotation (vsini = 39km/s, P<8.7h) and is predicted to evolve into an unusually fast rotating white dwarf. This nicely confirms a prediction by Kawaler (1999) who deduced a rotation velocity of 130km/s from the power spectrum of the pulsations which implies a low inclination angle of the rotation axis.
We present observations and analysis of time-series spectroscopy and photometry of the pulsating subdwarf B star PG 1219+534 (KY UMa). Subdwarf B stars are blue horizontal branch stars which have shed most of their hydrogen envelopes. Pulsating subdw arf B stars allow a probe into this interesting phase of evolution. Low resolution spectra were obtained at the Nordic Optical Telescope and Kitt Peak National Observatory, and photometric observations were obtained at MDM and Baker observatories in 2006. We extracted radial velocity and equivalent width variations from several Balmer and He I lines in individual spectra. The pulsation frequencies were separated via phase binning to detect line-profile variations in Balmer and helium lines, which were subsequently matched to atmospheric models to infer effective temperature and gravity changes throughout the pulsation cycle. From the photometry we recovered the four previously observed frequencies and detected a new fifth frequency. From the spectra we directly measured radial velocity and equivalent width variations for the four main frequencies and from atmospheric models we successfully inferred temperature and gravity changes for these four frequencies. We compared amplitude ratios and phase differences of these quantities and searched for outliers which could be identified as high-degree modes. These are the first such measurements for a normal amplitude pulsating subdwarf B star, indicating that spectroscopic studies can benefit the majority of pulsating subdwarf B stars.
71 - S. Falter 2002
The recently discovered new class of sdB pulsators (sdBV) offers a powerful possibility for the investigation of their interior and thus their evolutionary history. The first step towards applying asteroseismologic tools is the identification of puls ation modes. We reoport on simultaneous spectroscopic and multi-band photometric time series observations of PG 1605+072 and analyse its radial velocity and light curve.
Horizontal branch stars should show significant differential rotation with depth. Models that assume systematic angular momentum exchange in the convective envelope and local conservation of angular momentum in the core produce HB models that preserv e a rapidly rotating core. A direct probe of core rotation is available. The nonradial pulsations of the EC14026 stars frequently show rich pulsation spectra. Thus their pulsations probe the internal rotation of these stars, and should show the effects of rapid rotation in their cores. Using models of sdB stars that include angular momentum evolution, we explore this possibility and show that some of the sdB pulsators may indeed have rapidly rotating cores.
We present follow-up observations of pulsating subdwarf B (sdB) stars as part of our efforts to resolve the pulsation spectra for use in asteroseismological analyses. This paper reports on multisite campaigns of the pulsating sdB stars PG 1618+563B a nd PG 0048+091. Data were obtained from observatories placed around the globe for coverage from all longitudes. For PG 1618+563B, our five-site campaign uncovered a dichotomy of pulsation states: Early during the campaign the amplitudes and phases (and perhaps frequencies) were quite variable while data obtained late in the campaign were able to fully resolve five stable pulsation frequencies. For PG 0048+091, our five-site campaign uncovered a plethora of frequencies with short pulsation lifetimes. We find them to have observed properties consistent with stochastically excited oscillations, an unexpected result for subdwarf B stars. We discuss our findings and their impact on subdwarf B asteroseismology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا