ﻻ يوجد ملخص باللغة العربية
We report the detection of a non-thermal hard X-ray component from Sco X-1 based upon the analysis of 20-220 keV spectra obtained with the HEXTE experiment on-board the RXTE satellite. We find that the addition of a power-law component to a thermal bremsstrahlung model is required to achieve a good fit in 5 of 16 observations analyzed. Using PCA data we were able to track the movement of the source along the Z diagram, and we found that the presence of the hard X-ray tail is not confined to a specific Z position. However, we do observe an indication that the power law index hardens with increasing mass accretion rate, as indicated from the position on the Z diagram. We find that the derived non-thermal luminosities are at order of 10% of that derived for the brightest of the atoll sources.
We report RXTE results of spectral analyses of three (Sco X-1, GX 349+2, and Cyg X-2) out of the 6 known Z sources, with emphasis in the hard X-ray emission. No hard X-ray tails were found for Cyg X-2 (< 8.4E-5 photons cm**-2 s**-1, 50-100 keV, 3 sig
We study hard X-ray emission of the brightest accreting neutron star Sco X-1 with INTEGRAL observatory. Up to now INTEGRAL have collected ~4 Msec of deadtime corrected exposure on this source. We show that hard X-ray tail in time average spectrum of
Magnetars persistent emission above 10 keV was recently discovered thanks to the imaging capabilities of the IBIS coded mask telescope on board the INTEGRAL satellite. The only two sources that show some degree of long term variability are SGR 1806-2
We present the results from simultaneous radio (Very Large Array) and X-ray (Rossi-X-ray Timing Explorer) observations of the Z-type neutron star X-ray binary GX~17+2. The aim is to assess the coupling between X-ray and radio properties throughout it
Sco X-1, the brightest low mass X-ray binary, is likely to be a source for gravitational wave emission. In one mechanism, emission of a gravitational wave arrests the increase in spin frequency due to the accretion torque in a low mass X-ray binary.