ﻻ يوجد ملخص باللغة العربية
We have observed a large sample of compact planetary nebulae in the near-infrared to determine how the 2^1P-2^1S HeI line at 2.058um varies as a function of stellar effective temperature, Teff. The ratio of this line with HI Br g at 2.166um has often been used as a measure of the highest Teff present in a stellar cluster, and hence on whether there is a cut-off in the stellar initial mass function at high masses. However, recent photoionisation modelling has revealed that the behaviour of this line is more complex than previously anticipated. Our work shows that in most aspects the photoionisation models are correct. In particular, we confirm the weakening of the 2^1P-2^1S as Teff increases beyond 40000K. However, in many cases the model underpredicts the observed ratio when we consider the detailed physical conditions in the individual planetary nebulae. Furthermore, there is evidence that there is still significant 2^1P-2^1S HeI line emission even in the planetary nebulae with very hot (Teff>100000K) central stars. It is clear from our work that this ratio cannot be considered as a reliable measure of effective temperature on its own.
We present observations and models of the behaviour of the HI and HeI lines between 1.6 and 2.2um in a small sample of compact HII regions. As in our previous papers on planetary nebulae, we find that the `pure 1.7007um 4^3D-3^3P and 2.16475um 7^(3,1
We conducted systematic observations of the H I Br$alpha$ (4.05 $mu$m) and Br$beta$ (2.63 $mu$m) lines in 52 nearby ($z<0.3$) ultraluminous infrared galaxies (ULIRGs) with AKARI. Among 33 ULIRGs wherein the lines are detected, three galaxies show ano
The physical conditions in typical starburst galaxies are investigated through critical infrared (IR) line ratios, as previously suggested by Lutz et al. (1998, A&A, 333, L75). The calculations by a composite model which consistently accounts for the
Protoplanetary disks around young stars are the sites of planet formation. While the dust mass can be estimated using standard methods, determining the gas mass - and thus the amount of material available to form giant planets - has proven to be very
Recent state-of-the-art calculations of A-values and electron impact excitation rates for Fe III are used in conjunction with the Cloudy modeling code to derive emission line intensity ratios for optical transitions among the fine-structure levels of