ﻻ يوجد ملخص باللغة العربية
The U. C. Berkeley Infrared Spatial Interferometer has measured the mid-infrared visibilities of the carbon star IRC+10216 and the red supergiant VY CMa. The dust shells around these sources have been previously shown to be time-variable, and these new data are used to probe the evolution of the dust shells on a decade time-scale, complementing contemporaneous studies at other wavelengths. Self-consistent, spherically-symmetric models at maximum and minimum light both show the inner radius of the IRC+10216 dust shell to be much larger (150 mas) than that expected from the dust condensation temperature, implying that dust production has slowed or stopped in recent years. Apparently, dust does not form every pulsational cycle (638 days), and these mid-infrared results are consistent with recent near-IR imaging which indicates little or no new dust production in the last three years (Tuthill et al 2000). Spherically symmetric models failed to fit recent VY CMa data, implying that emission from the inner dust shell is highly asymmetric and/or time-variable.
Using the U.C. Berkeley Infrared Spatial Interferometer with an RF filterbank, the first interferometric observations of mid-infrared molecular absorption features of ammonia (NH_3) and silane (SiH_4) with very high spectral resolution (R ~ 100000) w
The U. C. Berkeley Infrared Spatial Interferometer has been outfitted with a filterbank system to allow interferometric observations of mid-infrared spectral lines with very high spectral resolution (R ~ 10^5). This paper describes the design, implem
We report long-baseline interferometric measurements of circumstellar dust around massive evolved stars with the MIDI instrument on the Very Large Telescope Interferometer and provide spectrally dispersed visibilities in the 8-13 micron wavelength ba
We present mid- and far- IR imaging of four famous hypergiant stars: the red supergiants $mu$ Cep and VY CMa, and the warm hypergiants IRC +10420 and $rho$ Cas. Our 11 to 37 $mu$m SOFIA/FORCAST imaging probes cool dust not detected in visual and near
A spectral-line survey of IRC+10216 in the 345 GHz band has been undertaken with the Submillimeter Array. Although not yet completed, it has already yielded a fairly large sample of narrow molecular emission lines with line-widths indicating expansio