ترغب بنشر مسار تعليمي؟ اضغط هنا

What Fraction of Gravitational Lens Galaxies Lie in Groups?

140   0   0.0 ( 0 )
 نشر من قبل C. R. Keeton
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We predict how the observed variations in galaxy populations with environment affect the number and properties of gravitational lenses in different environments. Two trends dominate: lensing strongly favors early-type galaxies, which tend to lie in dense environments, but dense environments tend to have a larger ratio of dwarf to giant galaxies than the field. The two effects nearly cancel, and the distribution of environments for lens and non-lens galaxies are not substantially different (lens galaxies are slightly less likely than non-lens galaxies to lie in groups and clusters). We predict that about 20% of lens galaxies are in bound groups (defined as systems with a line-of-sight velocity dispersion sigma in the range 200 < sigma < 500 km/s), and another roughly 3% are in rich clusters (sigma > 500 km/s). Therefore at least roughly 25% of lenses are likely to have environments that significantly perturb the lensing potential. If such perturbations do not significantly increase the image separation, we predict that lenses in groups have a mean image separation that is about 0.2 smaller than that for lenses in the field and estimate that 20-40 lenses in groups are required to test this prediction with significance. The tail of the distribution of image separations is already illuminating. Although lensing by galactic potential wells should rarely produce lenses with image separations theta >~ 6, two such lenses are seen among 49 known lenses, suggesting that environmental perturbations of the lensing potential can be significant. Further comparison of theory and data will offer a direct probe of the dark halos of galaxies and groups and reveal the extent to which they affect lensing estimates of cosmological parameters.



قيم البحث

اقرأ أيضاً

90 - C.S. Kochanek 1999
Most gravitational lens galaxies are early-type galaxies in relatively low density environments. We show that they lie on the same fundamental plane as early-type galaxies in both local and distant rich clusters. Their surface brightness evolution re quires a typical star formation epoch of z=2-3, almost indistinguishable from that of rich cluster galaxies at comparable redshifts. The restricted galaxy type range of the lenses means that photometric redshifts work well even with only 1-3 filter photometry. We make preliminary measurements of the mass and luminosity functions of the lens galaxies, and find they are consistent with the standard model used for deriving cosmological limits using lens statistics. As expected for a mass-weighted sample, they are more massive and more luminous than the overall early-type galaxy population.
73 - Jaiyul Yoo 2005
We explore the halo structure of four gravitational lenses with well-observed, thin Einstein rings. We find that the gravitational potentials are well described by ellipsoidal density distributions in the sense that the best-fit nonellipsoidal models have parameters consistent with their ellipsoidal counterparts. We find upper limits on the standard parameters for the deviation from an ellipse of |a_3/a_0|<0.023, 0.019, 0.037, and 0.035, and |a_4/a_0|<0.034, 0.041, 0.051, and 0.064 for SDSS J0924+0219, HE0435-1223, B1938+666, and PG1115+080, respectively. We find that the lens galaxies are at the centers of their dark matter halos, and obtain upper limits for the offset of each center of mass from the center of light of |Delta x|<0.004, 0.005, 0.009, and 0.005 arcsec, corresponding to 22, 29, 70, and 23 pc. These limits also exclude the possibility of any significant lopsidednessof the dark matter halos and set an upper limit of f_sat<sqrt(N)% on the mass fraction of massive substructures inside the Einstein ring if they are divided over N satellites. We also explore the properties of galaxies as substructures in groups for the lens PG1115+080, finding evidence for dark matter halos associated with the galaxies but no evidence for a clear distinction between satellite and central galaxies.
We present a joint estimate of the stellar/dark matter mass fraction in lens galaxies and the average size of the accretion disk of lensed quasars from microlensing measurements of 27 quasar image pairs seen through 19 lens galaxies. The Bayesian est imate for the fraction of the surface mass density in the form of stars is $alpha=0.21pm0.14$ near the Einstein radius of the lenses ($sim 1 - 2$ effective radii). The estimate for the average accretion disk size is $R_{1/2}=7.9^{+3.8}_{-2.6}sqrt{M/0.3M_sun}$ light days. The fraction of mass in stars at these radii is significantly larger than previous estimates from microlensing studies assuming quasars were point-like. The corresponding local dark matter fraction of 79% is in good agreement with other estimates based on strong lensing or kinematics. The size of the accretion disk inferred in the present study is slightly larger than previous estimates.
65 - Neil Trentham 2004
Star formation happens in two types of environment: ultraviolet-bright starbursts (like 30 Doradus and HII galaxies at low redshift and Lyman-break galaxies at high redshift) and infrared-bright dust-enshrouded regions (which may be moderately star-f orming like Orion in the Galaxy or extreme like the core of Arp 220). In this work I will estimate how many of the stars in the local Universe formed in each type of environment, using observations of star-forming galaxies at all redshifts at different wavelengths and of the evolution of the field galaxy population.
256 - Mark J. Henriksen 1993
The recent {sl ROSAT /} X-ray detections of hot intergalactic gas in three groups of galaxies are reviewed and the resulting baryonic fraction in these groups is reevaluated. We show that the baryonic fraction obtained, assuming hydrostatic equilibri um, should depend, perhaps sensitively, on the radius out to which the X-rays are detected, and the temperature profile of the gas. We find that the NGC 2300 group has a baryonic fraction out to $25$ of at least 20%, thus over five times higher than in the original analysis of Mulchaey etal (1993), and also much higher than one would obtain from big-bang nucleosynthesis, but similar to the other two groups as well as rich clusters. With this baryonic fraction, groups would be fair tracers of the distribution of baryons in the Universe if $Omega h_{50}^2 = 0.3$. A baryonic fraction that increases with radius is consistent with the X-ray data from all three groups. However, a detailed analysis of the NGC 2300 group shows that the dependence of baryonic fraction on radius is not well constrained by the data, in part because of uncertainties in the estimated background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا