ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cometary Blue Compact Dwarf Galaxies Mkn 59 and Mkn 71: Clues to Dwarf Galaxy Evolution?

140   0   0.0 ( 0 )
 نشر من قبل Kai Noeske
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K.G. Noeske




اسأل ChatGPT حول البحث

Cometary Blue Compact Dwarf Galaxies (iI,C BCDs) are characterized by off-center starbursts close to the end of an elongated dwarf irregular (dI)-like host galaxy. This may either represent randomly enhanced star-forming activity of a dI, or may be caused by a set of special properties of such systems or their environment. For a first investigation of this issue, we analyse the nearby iI,C BCDs Markarian 59 and Markarian 71. Using deep ground-based spectrophotometric data and HST images, we derive physical properties, structure and ages of the starburst regions and the underlying stellar host galaxies. The metallicities show small scatter in the vicinity of the star-forming regions and along the major axis of Mrk 59 which suggests effective mixing of heavy elements on kpc scales. The surface brightness profiles of the underlying host galaxies in either iI,C BCD show an exponential decay with a central surface brightness and scale length that are intermediate between typical iE/nE BCDs and dIs. Spectral population synthesis models in combination with colour magnitude diagrams and colour profiles yield most likely formation ages of ~2 Gyr for the host galaxies in both iI,C BCDs, with upper limits of ~4 Gyr for Mrk 59 and ~3 Gyr for Mrk 71, i.e. significantly lower than the typical age of several Gyr derived for the host galaxies of iE/nE BCDs. These findings raise the question whether iI,C systems form a distinct class within BCDs with respect to the age and structure of their hosts, or whether they represent an evolutionary stage connecting young i0 BCDs and classical iE/nE BCDs. Properties of analogous objects studied in the local universe and at medium redshifts provide some support for this evolutionary hypothesis.



قيم البحث

اقرأ أيضاً

139 - T. X. Thuan , F. E. Bauer (2 , 3 2014
We present XMM-Newton and Chandra observations of two low-metallicity cometary blue compact dwarf (BCD) galaxies, Mrk 59 and Mrk 71. The first BCD, Mrk 59, contains two ultraluminous X-ray (ULX) sources, IXO 72 and IXO 73, both associated with bright massive stars and H II complexes, as well as one fainter extended source associated with a massive H II complex at the head of the cometary structure. The low-metallicity of Mrk 59 appears to be responsible for the presence of the two ULXs. IXO 72 has varied little over the last 10 yr, while IXO 73 has demonstrated a variability factor of ~4 over the same period. The second BCD, Mrk 71, contains two faint X-ray point sources and two faint extended sources. One point source is likely a background AGN, while the other appears to be coincident with a very luminous star and a compact H II region at the head of the cometary structure. The two faint extended sources are also associated with massive H II complexes. Although both BCDs have the same metallicity, the three sources in Mrk 71 have X-ray luminosities ~1-2 orders of magnitude fainter than those in Mrk 59. The age of the starburst may play a role.
New FUSE far-UV spectroscopy of the nearby metal-deficient (Zsun/8) cometary Blue Compact Dwarf (BCD) galaxy Markarian (Mrk) 59 is discussed. The data are used to investigate element abundances in its interstellar medium. The H I absorption lines are characterized by narrow cores which are interstellar in origin and by broad wings which are stellar in origin. The mean interstellar H I column density is ~ 7x10E20 cm-2 in Mrk 59. No H2 lines are seen and N(H2) is < 10E15 cm-2 at the 10 sigma level. The lack of diffuse H2 is due to the combined effect of a strong UV radiation field which destroys the H2 molecules and a low metallicity which leads to a scarcity of dust grains necessary for H2 formation. P-Cygni profiles of the S VI 933.4, 944.5 A and O VI 1031.9, 1037.6 A lines are seen, indicating the presence of very hot O stars and a stellar wind terminal velocity of ~ 1000 km/s. By fitting the line profiles with multiple components having each a velocity dispersion b = 7 km/s and spanning a radial velocity range of 100 km/s, some of which can be saturated, we derive heavy element abundances in the neutral gas. We find log N(O I)/N(H I) = -5.0+/-0.3 or [O I/H I] = -1.5 for the neutral gas, about a factor of 10 below the oxygen abundance of the supergiant H II region, implying self-enrichment of the latter.
97 - Hong-Xin Zhang 2020
It has long been speculated that many starburst or compact dwarf galaxies are resulted from dwarf-dwarf galaxy merging, but unequivocal evidence for this possibility has rarely been reported in the literature. We present the first study of deep optic al broadband images of a gas-dominated blue compact dwarf galaxy (BCD) VCC848 (Mstar=2e8Msun) which hosts extended stellar shells and thus is confirmed to be a dwarf-dwarf merger. VCC848 is located in the outskirts of the Virgo Cluster. By analyzing the stellar light distribution, we found that VCC848 is the result of a merging between two dwarf galaxies with a primary-to-secondary mass ratio < ~ 5 for the stellar components and < ~ 2 for the presumed dark matter halos. The secondary progenitor galaxy has been almost entirely disrupted. The age-mass distribution of photometrically selected star cluster candidates in VCC848 implies that the cluster formation rate (CFR, proportional to star formation rate) was enhanced by a factor of ~ 7 - 10 during the past 1 Gyr. The merging-induced enhancement of CFR peaked near the galactic center a few hundred Myr ago and has started declining in the last few tens of Myr. The current star formation activities, as traced by the youngest clusters, mainly occur at large galactocentric distances (> ~ 1 kpc). The fact that VCC848 is still (atomic) gas-dominated after the period of most violent collision suggests that gas-rich dwarf galaxy merging can result in BCD-like remnants with extended atomic gas distribution surrounding a blue compact center, in general agreement with previous numerical simulations.
339 - M. Koleva , 2014
Blue compact dwarf galaxies (BCDs) form stars at, for their sizes, extraordinarily high rates. In this paper, we study what triggers this starburst and what is the fate of the galaxy once its gas fuel is exhausted. We select four BCDs with smooth out er regions, indicating them as possible progenitors of dwarf elliptical galaxies. We have obtained photometric and spectroscopic data with the FORS and ISAAC instruments on the VLT. We analyse their infra-red spectra using a full spectrum fitting technique which yields the kinematics of their stars and ionized gas together with their stellar population characteristics. We find that the_stellar_ velocity to velocity dispersion ratio (v/sigma) of our BCDs is of the order of 1.5, similar to that of dwarf elliptical galaxies. Thus, those objects do not require significant (if any) loss of angular momentum to fade into early type dwarfs. This finding is in discordance with previous studies, which however compared the stellar kinematics of dwarf elliptical galaxies with the gaseous kinematics of star forming dwarfs. The stellar velocity fields of our objects are very disturbed and the star-formation regions are often kinematically decoupled from the rest of the galaxy. These regions can be more or less metal rich with respect to the galactic body, and sometimes they are long lived. These characteristics prevent us from pinpointing a unique trigger of the star formation, even within the same galaxy. Gas impacts, mergers, and in-spiraling gas clumps are all possible star-formation ignitors for our targets.
330 - Philip Kaaret , Joseph Schmitt , 2011
We measured the X-ray fluxes from an optically-selected sample of blue compact dwarf galaxies (BCDs) with metallicities <0.07 and solar distances less than 15 Mpc. Four X-ray point sources were observed in three galaxies, with five galaxies having no detectable X-ray emission. Comparing X-ray luminosity and star formation rate, we find that the total X-ray luminosity of the sample is more than 10 times greater than expected if X-ray luminosity scales with star formation rate according to the relation found for normal-metallicity star-forming galaxies. However, due to the low number of sources detected, one can exclude the hypothesis that the relation of the X-ray binaries to SFR in low-metalicity BCDs is identical to that in normal galaxies only at the 96.6% confidence level. It has recently been proposed that X-ray binaries were an important source of heating and reionization of the intergalactic medium at the epoch of reionization. If BCDs are analogs to unevolved galaxies in the early universe, then enhanced X-ray binary production in BCDs would suggest an enhanced impact of X-ray binaries on the early thermal history of the universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا