ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of X-ray Emission from G328.4+0.2, a Crab-Like Supernova Remnant

41   0   0.0 ( 0 )
 نشر من قبل Jack Hughes
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف John P. Hughes




اسأل ChatGPT حول البحث

G328.4+0.2 is a moderately small (5 arcmin x 5arcmin) Galactic radio supernova remnant (SNR) at a distance of at least 17 kpc that has been long suggested to be Crab-like. Here we report on the detection with ASCA of the X-ray emission from the SNR. The X-ray source is faint with an observed flux of (6.0 +/- 0.8)E-13 erg/s/cm^2 over the 2-10 keV band. The emission is heavily cut-off at low energies and no flux is detected below 2 keV. Spectral analysis confirms that the column density to the source is indeed large, N_H ~ 1E23 atoms/cm^2, and consistent with the total column density of hydrogen through the Galaxy at this position. Good fits to the spectrum can be obtained for either thermal plasma or nonthermal power-law models, although the lack of detected line emission as well as other evidence argues against the former interpretation. The power-law index we find, alpha_P = 2.9 (+0.9,-0.8), is consistent with other Crab-like SNRs. In the radio band G328.4+0.2 is nearly as luminous as the Crab Nebula, yet in the X-ray band luminosity it is some 70 times fainter. Nevertheless its inferred soft X-ray band luminosity is greater than all but the brightest pulsar-powered synchrotron nebulae and implies that G328.4+0.2 contains a rapidly spinning, as yet undetected, pulsar that is losing energy at a rate of approximately 1E38 erg/s.


قيم البحث

اقرأ أيضاً

53 - Bryan Gaensler 2000
We report on radio continuum and HI observations of the radio source G328.4+0.2 using the Australia Telescope Compact Array. Our results confirm G328.4+0.2 to be a filled-center nebula with no surrounding shell, showing significant linear polarizatio n and an almost flat spectral index. These results lead us to conclude that G328.4+0.2 is a Crab-like, or ``plerionic, supernova remnant (SNR), presumably powered by an unseen central pulsar. HI absorption towards G328.4+0.2 puts a lower limit on its distance of 17.4 +/- 0.9 kpc, making it the largest (D=25 pc) and most luminous (L_R = 3e35 erg/s) Crab-like SNR in the Galaxy. We infer G328.4+0.2 to be significantly older than the Crab Nebula, but powered by a pulsar which is fast spinning (P<20 ms) and which has a comparatively low magnetic field (B<1e12 G). We propose G328.4+0.2, G74.9+1.2 and N157B as a distinct group of large-diameter, high-luminosity Crab-like SNRs, all powered by fast-spinning low-field pulsars.
126 - V. A. Acciari , E. Aliu , T. Arlen 2011
We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tychos supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak e mission coming from the direction of the remnant, compatible with a point source located at $00^{rm h} 25^{rm m} 27.0^{rm s}, +64^{circ} 10^{prime} 50^{primeprime}$ (J2000). The TeV photon spectrum measured by VERITAS can be described with a power-law $dN/dE = C(E/3.42;textrm{TeV})^{-Gamma}$ with $Gamma = 1.95 pm 0.51_{stat} pm 0.30_{sys}$ and $C = (1.55 pm 0.43_{stat} pm 0.47_{sys}) times 10^{-14}$ cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $sim 0.9%$ percent of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models which can describe the data. The lowest magnetic field allowed in these models is $sim 80 mu$G, which may be interpreted as evidence for magnetic field amplification.
103 - Aya Bamba 2016
We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ~ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high temperature (kT ~ 3.4 keV) component with a very low ionization timescale (~ 2.7e9 cm^{-3}s), or a hard non-thermal component with a photon index Gamma~2.3. The average density of the low-temperature plasma is rather low, of the order of 10^{-3}--10^{-2} cm^{-3}, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.
129 - Una Hwang 1999
The Galactic supernova remnant W49B has one of the most impressive X-ray emission line spectra obtained with the Advanced Satellite for Cosmology and Astronomy (ASCA). We use both plasma line diagnostics and broadband model fits to show that the Si a nd S emission lines require multiple spectral components. The spectral data do not necessarily require individual elements to be spatially stratified, as suggested by earlier work, although when ASCA line images are considered, it is possible that Fe is stratified with respect to Si and S. Most of the X-ray emitting gas is from ejecta, based on the element abundances required, but is surprisingly close to being in collisional ionization equilibrium. A high ionization age implies a high internal density in a young remnant. The fitted emission measure for W49B indicates a minimum density of 2 cm^-3, with the true density likely to be significantly higher. W49B probably had a Type Ia progenitor, based on the relative element abundances, although a low-mass Type II progenitor is still possible. We find persuasive evidence for Cr and possibly Mn emission in the ASCA spectrum--the first detection of these elements in X-rays from a cosmic source.
We report here on the first detection at X-ray wavelengths of the Supernova Remnant (SNR) G337.8-0.1, carried out with the XMM-Newton Observatory. Using the X-ray observations, we studied the X-ray morphology of the remnant at different energy ranges , analysed the spectral properties and investigated a possible variable behavior. The SNR shows a diffuse filled-center structure in the X-ray region with an absence of a compact source in its center. We find a high column density of N_H > 6.9 * 10^{22} cm^{-2}, which supports a relatively distant location (d > 7 kpc). The X-ray spectrum exhibits emission lines, indicating that the X-ray emission has a thin thermal plasma origin, and is well represented by a non-equilibrium ionization (NEI) plasma model. The X-ray characteristics and well-known radio parameters show that G337.8-0.1 belongs to the emerging class of mixed-morphology (MM) SNRs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا