ترغب بنشر مسار تعليمي؟ اضغط هنا

Voids in the LCRS versus CDM Models

59   0   0.0 ( 0 )
 نشر من قبل Volker Mueller
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Mueller




اسأل ChatGPT حول البحث

We have analyzed the distribution of void sizes in the two-dimensional slices of the Las Campanas Redshift Survey (LCRS). Fourteen volume-limited subsamples were extracted from the six slices to cover a large part of the survey and to test the robustness of the results against cosmic variance. Thirteen samples were randomly culled to produce homogeneously selected samples. We then studied the relationship between the cumulative area covered by voids and the void size as a property of the void hierarchy. We find that the distribution of void sizes scales with the mean galaxy separation, $lambda$. In particular, we find that the size of voids covering half of the area is given by $D_{med} approx lambda + (12pm3) h^{-2}$Mpc. Next, by employing an environmental density threshold criterion to identify mock galaxies, we were able to extend this analysis to mock samples from dynamical $n$-body simulations of Cold Dark Matter (CDM) models. To reproduce the observed void statistics, overdensity thresholds of $delta_{th} approx 0 ... 1$ are necessary. We have compared standard (SCDM), open (OCDM), vacuum energy dominated ($Lambda$CDM), and broken scale invariant CDM models (BCDM): we find that both the void coverage distribution and the two-point correlation function provide important and complementary information on the large-scale matter distribution. The dependence of the void statistics on the threshold criterion for the mock galaxy indentification shows that the galaxy biasing is more crucial for the void size distribution than are differences between the cosmological models.



قيم البحث

اقرأ أيضاً

277 - Esra Russell 2013
Observational studies show that voids are prominent features of the large scale structure of the present day Universe. Even though their emerging from the primordial density perturbations and evolutionary patterns differ from dark matter halos, N-bod y simulations and theoretical models have shown that voids also merge together to form large void structures. In this study, following Sheth & van de Weygaert (2004), we formulate an analytical approximate description of the hierarchical void evolution of growing voids by adopting the halo merging algorithm given by Lacey & Cole (1993) in the Einstein de Sitter (EdS) Universe. To do this, we take into account the general volume distribution of voids which consists of two main void processes: merging and collapsing. We show that the volume distribution function can be reduced to a simple form, by neglecting the collapsing void contribution since the collapse process is negligible for large size voids. Therefore, the void volume fraction has a contribution only from growing voids. This algorithm becomes the analogue of the halo merging algorithm. Based on this growing void distribution, we obtain the void merging algorithm in which we define and formulate void merging and absorption rates, as well as void size and redshift survival probabilities and also failure rates in terms of the self similar and currently favored dark energy dominated cold dark matter models in the EdS Universe.
We study the statistics of various large-scale structure tracers in gravity-only cosmological simulations including baryons and cold dark matter (CDM) initialized with two different transfer functions, and simulated as two distinct fluids. This allow s us to study the impact of baryon-CDM relative perturbations on these statistics. In particular, we focus on the statistics of cosmic voids, as well as on the matter and halo real-space 2-point correlation function and baryon acoustic oscillations (BAO) peak. We find that the void size function is affected at the 1-2% level at maximum, and that the impact is more important at higher redshift, while the void density profile and void bias are roughly unaffected. We do not detect a sizeable impact of relative baryon-CDM perturbations on the real-space correlation functions of matter and halos or the BAO peak, which is in line with results from previous works. Our results imply that it would be hard to use voids or real-space correlation functions to constrain baryon-CDM relative perturbations, but also that we might not have to include them in models for the analysis of future cosmological surveys data.
105 - B.A. Bassett , M. Kunz , J. Silk 2002
We study a model of the dark energy which exhibits a rapid change in its equation of state w(z), such as occurs in vacuum metamorphosis. We compare the model predictions with CMB, large scale structure and supernova data and show that a late-time tra nsition is marginally preferred over standard Lambda-CDM.
196 - Shmuel Nussinov 2009
We briefly review some recent Cold Dark Matter (CDM) models. Our main focus are charge symmetric models of WIMPs which are not the standard SUSY LSPs (Lightest Supersymmetric Partners). We indicate which experiments are most sensitive to certain aspe cts of the models. In particular we discuss the manifestations of the new models in neutrino telescopes and other set-ups. We also discuss some direct detection experiments and comment on measuring the direction of recoil ions--which is correlated with the direction of the incoming WIMP. This could yield daily variations providing along with the annual modulation signatures for CDM.
97 - S. Borgani 1997
Recently, peculiar velocity measurements became available for a new sample of galaxy clusters. From an accurately calibrated Tully-Fisher relation for spiral galaxies, we compute the rms cluster peculiar velocity and compare it to the linear theory p redictions of COBE-normalized low-density and open CDM models (LambdaCDM and OCDM, respectively). Confidence levels for model rejection are estimated using a Monte Carlo procedure to generate for each model a large ensemble of artificial data sets. Following Zaroubi et al. (1997), we express our results in terms of constraints on the (Omega_0,n_pr,h) parameter space. Such constraints turn into sigma_8 Omega_0^{0.6}=0.50^{+0.25}_{-0.14} at the 90% c.l., thus in agreement with results from cluster abundance. We show that our constraints are also consistent with those implied by the shape of the galaxy power spectrum within a rather wide range for the values of the model parameters. Finally, we point out that our findings disagree at about the 3sigma level with respect to those by Zaroubi et al. (1997), based on the Mark III catalogue, which tend to prefer larger Omega_0 values within the CDM class of models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا