ترغب بنشر مسار تعليمي؟ اضغط هنا

Timescales of disk evolution and planet formation

56   0   0.0 ( 0 )
 نشر من قبل Wolfgang Brandner
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. Brandner




اسأل ChatGPT حول البحث

We present high-spatial resolution HST and adaptive optics observations, and high-sensitivity ISO (ISOCAM & ISOPHOT) observations of a sample of X-ray selected weak-line (WTTS) and post (PTTS) T Tauri stars located in the nearby Chamaeleon T and Scorpius-Centaurus OB associations. HST/NICMOS and adaptive optics observations aimed at identifying substellar companions at separations >=30 A.U. from the primary stars. No such objects were found within 300 A.U. of any of the target stars, and a number of faint objects at larger separations can very likely be attributed to a population of background stars. ISOCAM observations of 5 to 15 Myr old WTTS and PTTS in ScoCen reveal infrared excesses which are clearly above photospheric levels, and which have a spectral index intermediate between that of younger (1 to 5 Myr) T Tauri stars in Cha and that of pure stellar photospheres. The difference in the spectral index of the older PTTS in ScoCen compared to the younger classical and WTTS in Cha can be attributed to a deficiency of smaller size (0.1 to 1mu) dust grains relative to larger size (~5mu) dust grains in the disks of the PTTS. The lack of small dust grains is either due to the environment (effect of nearby O stars and supernova explosions) or due to disk evolution. If the latter is the case, it would hint that circumstellar disks start to get dust depleted at an age between 5 to 15 Myr. Dust depletion is very likely related to the build-up of larger particles (ultimately rocks and planetesimals) and thus an indicator for the onset of the period of planet formation.

قيم البحث

اقرأ أيضاً

The discovery of close orbiting extrasolar giant planets led to extensive studies of disk planet interactions and the forms of migration that can result as a means of accounting for their location. Early work established the type I and type II migrat ion regimes for low mass embedded planets and high mass gap forming planets respectively. While providing an attractive means of accounting for close orbiting planets intially formed at several AU, inward migration times for objects in the earth mass range were found to be disturbingly short, making the survival of giant planet cores an issue. Recent progress in this area has come from the application of modern numerical techniques which make use of up to date supercomputer resources. These have enabled higher resolution studies of the regions close to the planet and the initiation of studies of planets interacting with disks undergoing MHD turbulence. This work has led to indications of how the inward migration of low to intermediate mass planets could be slowed down or reversed. In addition, the possibility of a new very fast type III migration regime, that can be directed inwards or outwards, that is relevant to partial gap forming planets in massive disks has been investigated.
The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (p roto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of 0.001 - 0.003 Msun, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.
60 - D.N.C. Lin 1998
We consider several processes operating during the late stages of planet formation that can affect observed orbital elements. Disk-planet interactions, tidal interactions with the central star, long term orbital instability and the Kozai mechanism are discussed.
We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to ~ 40 Myr: NGC 1333, NGC 1960, NGC 2232, NGC 2244, NGC 236 2, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion OB1a and OB1b, Taurus, the b{eta} Pictoris Moving Group, r{ho} Ophiuchi, and the associations of Argus, Carina, Columba, Scorpius-Centaurus, and Tucana-Horologium. Our work features: 1.) a filtering technique to flag noisy backgrounds, 2.) a method based on the probability distribution of deflections, P(D), to obtain statistically valid photometry for faint sources, and 3.) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of disks three or more times brighter than the stellar photospheres at 24 {mu}m decays relatively slowly initially and then much more rapidly by ~ 10 Myr. However, there is a continuing component until ~ 35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12 - 20 Myr, including ~ 13 % of the original population, and with a post-peak mean duration of 10 - 20 Myr.
176 - J.C.B. Papaloizou 2004
We study and review disk protoplanet interactions using local shearing box simulations. These suffer the disadvantage of having potential artefacts arising from periodic boundary conditions but the advantage, when compared to global simulations, of b eing able to capture much of the dynamics close to the protoplanet at high resolution for low computational cost. Cases with and without self sustained MHD turbulence are considered. The conditions for gap formation and the transition from type I migration are investigated and found to depend on whether the single parameter M_p R^3/(M_* H^3), with M_p, M_*, R and H being the protoplanet mass, the central mass, the orbital radius and the disk semi-thickness respectively exceeds a number of order unity. We also investigate the coorbital torques experienced by a moving protoplanet in an inviscid disk. This is done by demonstrating the equivalence of the problem for a moving protoplanet to one where the protoplanet is in a fixed orbit which the disk material flows through radially as a result of the action of an appropriate external torque. For sustainable coorbital torques to be realized a quasi steady state must be realized in which the planet migrates through the disk without accreting significant mass. In that case although there is sensitivity to computational parameters, in agreement with earlier work by Masset & Papaloizou (2003) based on global simulations, the coorbital torques are proportional to the migration speed and result in a positive feedback on the migration, enhancing it and potentially leading to a runaway. This could lead to a fast migration for protoplanets in the Saturn mass range in massive disks and may be relevant to the mass period correlation for extrasolar planets which gives a preponderance of sub Jovian masses at short orbital period.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا