ترغب بنشر مسار تعليمي؟ اضغط هنا

FUSE Observations of the Low-Redshift Lyman-beta Forest

72   0   0.0 ( 0 )
 نشر من قبل J. Michael Shull
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a moderate-resolution (20-25 km/s) FUSE study of the low-redshift intergalactic medium. We report on studies of 7 extragalactic sightlines and 12 Ly-beta absorbers that correspond to Ly-alpha lines detected by HST/GHRS and STIS. These absorbers appear to contain a significant fraction of the low-z baryons and were a major discovery of the HST spectrographs. Using FUSE data, with 40 mA (4-sigma) Lyb detection limits, we have employed the equivalent width ratio of Lyb/Lya and occasionally higher Lyman lines, to determine the doppler parameter, b, and accurate column densities, N(HI), for moderately saturated lines. We detect Lyb absorption corresponding to all Lya lines with EW > 200 mA. The Lyb/Lya ratios yield a preliminary distribution function of doppler parameters, with mean <b> = 31.4 +/- 7.4 km/s and median b = 28 km/s, comparable to values at redshifts z = 2.0-2.5. If thermal, these b-values correspond to T(HI) ~ 50,000 K, although the inferred doppler parameters are considerably less than the widths derived from Lya profile fitting, <b(dopp)/b(width)> = 0.52. The typical increase in column density over that derived from profile fitting is Delta[log N(HI)] = 0.3, but ranges up to 1.0 dex. Our data suggest that the low-z Lya absorbers contain sizable non-thermal motions or velocity components in the line profile, perhaps arising from cosmological expansion and infall.

قيم البحث

اقرأ أيضاً

We present FUSE observations of the HeII Lyman alpha forest in the redshift range 2.3 < z < 2.7 towards HS1700+6416. Between October 2002 and February 2003, the brightness of the QSO increased by a factor 2. Therefore, with an exposure time of 203 ks during orbital night, the quality of the resulting spectrum is comparable to the HE2347-4342 data. This second line of sight with a resolved HeII Lyman alpha forest reveals a similar variation of several orders of magnitude of the column density ratio eta = N(HeII)/N(HI) and confirms the results of previous studies. The well-known metal line spectrum of HS1700+6416 permits to examine the influence of metal line absorption on the HeII column densities.
We present the far-UV spectrum of the quasar HS1700+6416 taken with FUSE. This QSO provides the second line of sight with the HeII absorption resolved into a Ly alpha forest structure. Since HS1700+6416 is slightly less redshifted (z=2.72) than HE234 7-4342, we only probe the post-reionization phase of HeII, seen in the evolution of the HeII opacity, which is consistent with a simple power law. The HeII/HI ratio eta is estimated using a line profile-fitting procedure and an apparent optical depth approach, respectively. The expected metal line absorption in the far-UV is taken into account as well as molecular absorption of galactic H_2. About 27% of the eta values are affected by metal line absorption. In order to investigate the applicability of the analysis methods, we create simple artificial spectra based on the statistical properties of the HI Ly alpha forest. The analysis of the artificial data demonstrates that the apparent optical depth method as well as the line profile-fitting procedure lead to confident results for restricted data samples only (12.0 < log N(HI) < 13.0). The reasons are saturation in the case of the apparent optical depth and thermal line widths in the case of the profile fits. Furthermore, applying the methods to the unrestricted data set may mimic a correlation between eta and the strength of the HI absorption. For the restricted data samples a scatter of 10 - 15% in eta would be expected even if the underlying value is constant. The observed scatter is significantly larger than expected, indicating that the intergalactic radiation background is indeed fluctuating. In the redshift range 2.58 < z < 2.72, where the data quality is best, we find eta ~ 100, suggesting a contribution of soft sources like galaxies to the UV background.
Absorption between the rest-frame wavelengths of 973 and 1026 Angstroms in quasar spectra arises from two sources (apart from occasional metals): one is due to Lyman-alpha (Lya) absorption by materials at a low redshift, and the other from Lyman-beta (Lyb) at a higher redshift. These two sources of absorption are to a good approximation uncorrelated because of their wide physical separation. Therefore, the two-point correlation of absorption in this region of quasar spectra neatly factorizes into two pieces: the Lyb correlation at high z, and the Lya correlation at low z. The latter can be independently measured from quasar spectra at lower redshifts using current techniques. A simple division then offers a way to statistically separate out the Lyb two-point correlation from the Lya correlation. Several applications of this technique are discussed. First, since the Lyb absorption cross-section is lower than Lya by about a factor of 5, the Lyb forest is a better probe of the intergalactic medium (IGM) at higher redshifts where Lya absorption is often saturated. Second, for the same reason, the Lyb forest allows a better measurement of the equation of state of the IGM at higher overdensities, yielding stronger constraints on its slope when used in conjunction with the Lya forest. Third, models of the Lya forest based on gravitational instability make unique predictions for the Lyb forest, which can be tested against observations. We briefly point out that feedback processes that affect higher density regions but leave low density structure intact may be better constrained by the Lyb forest.
We compare the low redshift (z ~ 0.1) Lyman-alpha forest from hydrodynamical simulations with data from the Cosmic Origin Spectrograph (COS). We find tension between the observed number of lines with b-parameters in the range 25-45 km/s and the predi ctions from simulations that incorporate either vigorous feedback from active galactic nuclei or that exclude feedback altogether. The gas in these simulations is, respectively, either too hot to contribute to the Lyman-alpha absorption or too cold to produce the required line widths. Matching the observed b-parameter distribution therefore requires feedback processes that thermally or turbulently broaden the absorption features without collisionally (over-)ionising hydrogen. This suggests the Lyman-alpha forest b-parameter distribution is a valulable diagnostic of galactic feedback in the low redshift Universe. We furthermore confirm the low redshift Lyman-alpha forest column density distribution is better reproduced by an ultraviolet background with an HI photo-ionisation rate a factor 1.5-3 higher than predicted by Haardt & Madau (2012).
We present an analysis of the evolution of the Lyman-series forest into the epoch of reionization using cosmological radiative transfer simulations in a scenario where reionization ends late. We explore models with different midpoints of reionization and gas temperatures. We find that once the simulations have been calibrated to match the mean flux of the observed Lyman-$alpha$ forest at $4 < z < 6$, they also naturally reproduce the distribution of effective optical depths of the Lyman-$beta$ forest in this redshift range. We note that the tail of the largest optical depths that is most challenging to match corresponds to the long absorption trough of ULAS J0148+0600, which we have previously shown to be rare in our simulations. We consider the evolution of the Lyman-series forest out to higher redshifts, and show that future observations of the Lyman-$beta$ forest at $z>6$ will discriminate between different reionization histories. The evolution of the Lyman-$alpha$ and Lyman-$gamma$ forests are less promising as a tool for pushing studies of reionization to higher redshifts due to the stronger saturation and foreground contamination, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا