ترغب بنشر مسار تعليمي؟ اضغط هنا

EROs in the EIS Fields. I: The AXAF (Chandra) Deep Field

296   0   0.0 ( 0 )
 نشر من قبل Marco Scodeggio
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Scodeggio




اسأل ChatGPT حول البحث

The publicly available EIS-DEEP optical-NIR data for the AXAF (Chandra) Deep Field have been used to construct samples of Extremely Red Objects (EROs) using various single-band and multi-band color criteria. In this work we define as EROs objects with colors consistent with passively evolving elliptical galaxies at z $geq$ 1. The EROs surface densities we derive are intermediate between previous published values, emphasizing again the need for larger survey areas to constrain the effects of possible large-scale structure. Although various single-color selected samples can be derived, the EROs sample selected using R-Ks > 5, I-Ks > 4, J-Ks > 1.8 jointly is likely to contain the highest fraction of passively evolving luminous field elliptical galaxies at z >= 1, or conversely, the lowest fraction of lower redshift interlopers. The surface density of this multi-band selected EROs sample is consistent with the conclusion that little or no field elliptical volume density evolution has occurred in the redshift range 0 > z > 1.5. However, extensive spectroscopic followup is necessary to confirm this conclusion.



قيم البحث

اقرأ أيضاً

388 - E. J. Schreier 2001
We present preliminary results from imaging three HST/WFPC2 fields in V and I within the Chandra Deep Field South (CDFS). HSTs sensitivity and resolution are sufficient to reveal optical counterparts for 24 of the 26 CDFS X-ray sources detected in th e 300 ksec X-ray catalog and to determine the morphologies of most of these. We find that the X-ray sources comprise two apparently distinct populations of optical candidates: one optically faint (I > 24) with V - I colors consistent with the I > 24 field population; the other significantly brighter (I < 22) with colors redder than the I < 22 field population. More than 2/3 of the X-ray source counterparts are resolved galaxies. The brighter sources are mostly AGN, based on their high X-ray luminosity. The optically resolved sources in the brighter population have a very narrow range of V - I color and appear to be a mix of both late and early type morphologies at low to moderate redshift. We show that the second population, with fainter optical counterparts, can be explained as higher redshift Type 2 AGN.
We report on low-resolution multi-object spectroscopy of 30 faint targets (R ~ 24-25) in the HDF-S and AXAF deep field obtained with the VLT Focal Reducer/low dispersion Spectrograph (FORS1). Eight high-redshift galaxies with 2.75< z < 4 have been id entified. The spectroscopic redshifts are in good agreement with the photometric ones with a dispersion $sigma_z = 0.07$ at z<2 and $sigma_z = 0.16$ at z>2. The inferred star formation rates of the individual objects are moderate, ranging from a few to a few tens solar masses per year. Five out of the eight high-z objects do not show prominent emission lines. One object has a spectrum typical of an AGN. In the AXAF field two relatively close pairs of galaxies have been identified, with separations of 8.7 and 3.1 proper Mpc and mean redshifts of 3.11 and 3.93, respectively.
We report 20 and 6 cm VLA deep observations of the CDF-S including the Extended CDF-S. We discuss the radio properties of 266 cataloged radio sources, of which 198 are above a 20 cm completeness level reaching down to 43 microJy at the center of the field. Survey observations made at 6 cm over a more limited region covers the original CDF-S to a comparable level of sensitivity as the 20 cm observations. Of 266 cataloged radio sources, 52 have X-ray counterparts in the CDF-S and a further 37 in the E-CDF-S area not covered by the 1 Megasecond exposure. Using a wide range of material, we have found optical or infrared counterparts for 254 radio sources, of which 186 have either spectroscopic or photometric redshifts (Paper II). Three radio sources have no apparent counterpart at any other wavelength. Measurements of the 20 cm radio flux density at the position of each CDF-S X-ray source detected a further 30 radio sources above a conservative 3-sigma detection limit. X-ray and sub-mm observations have been traditionally used as a measure of AGN and star formation activity, respectively. These new observations probe the faint end of both the star formation and radio galaxy/AGN population, as well as the connection between the formation and evolution of stars and SMBHs. Both of the corresponding gravitational and nuclear fusion driven energy sources can lead to radio synchrotron emission. AGN and radio galaxies dominate at high flux densities. Although emission from star formation becomes more prominent at the microjansky levels reached by deep radio surveys, even for the weakest sources, we still find an apparent significant contribution from low luminosity AGN as well as from star formation.
173 - R. Giacconi , A. Zirm , J. Wang 2001
In this Paper we present the source catalog obtained from a 942 ks exposure of the Chandra Deep Field South (CDFS), using ACIS-I on the Chandra X-ray Observatory. Catalog generation proceeded simultaneously using two different methods; a method of ou r own design using a modified version of the SExtractor algorithm, and a wavelet transform technique developed specifically for Chandra observations. The detection threshold has been set in order to have less than 10 spurious sources, as assessed by extensive simulations. We subdivided the catalog into four sections. The primary list consists of objects common to the two detection methods. Two secondary lists contain sources which were detected by: 1) the SExtractor algorithm alone and 2) the wavelet technique alone. The fourth list consists of possible diffuse or extended sources. The flux limits at the aimpoint for the soft (0.5--2 keV) and hard (2--10 keV) bands are 5.5E-17 erg/s/cm^2 and 4.5E-16 erg/s/cm^2 respectively. The total number of sources is 346; out of them, 307 were detected in the 0.5--2 keV band, and 251 in the 2--10 keV band. We also present optical identifications for the catalogued sources. Our primary optical data is R band imaging to a depth of R~26.5 (Vega). We found that the R-band/Chandra offsets are small, ~1 arcsec. Coordinate cross-correlation finds 85% of the Chandra sources covered in R to have counterparts within the 3-sigma error box (>~1.5 arcsec depending on off-axis angle and signal-to-noise). The unidentified fraction of sources, approximately ~10--15 %, is close to the limit expected from the observed X-ray flux to R-band ratio distribution for the identified sample.
458 - R. Nanni , R. Gilli , C. Vignali 2020
We present the X-ray source catalog for the 479 ks Chandra exposure of the SDSS J1030+0524 field, that is centered on a region that shows the best evidence to date of an overdensity around a z > 6 quasar, and also includes a galaxy overdensity around a Compton-thick Fanaroff-Riley type II radio galaxy at z = 1.7. Using wavdetect for initial source detection and ACIS Extract for source photometry and significance assessment, we create preliminary catalogs of sources that are detected in the full, soft, and hard bands, respectively. We produce X-ray simulations that mirror our Chandra observation to filter our preliminary catalogs and get a completeness level of > 91% and a reliability level of 95% in each band. The catalogs in the three bands are then matched into a final main catalog of 256 unique sources. Among them, 244, 193, and 208 are detected in the full, soft, and hard bands, respectively. This makes J1030 field the fifth deepest extragalactic X-ray survey to date. The field is part of the Multiwavelength Survey by Yale-Chile (MUSYC), and is also covered by optical imaging data from the Large Binocular Camera (LBC) at the Large Binocular Telescope, near-IR imaging data from the Canada France Hawaii Telescope WIRCam, and Spitzer IRAC. Thanks to its dense multi-wavelength coverage, J1030 represents a legacy field for the study of large-scale structures around distant accreting supermassive black holes. Using a likelihood ratio analysis, we associate multi-band counterparts for 252 (98.4%) of the 256 Chandra sources, with an estimated reliability of 95%. Finally, we compute the cumulative number of sources in each X-ray band, finding that they are in general agreement with the results from the Chandra Deep Fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا