ترغب بنشر مسار تعليمي؟ اضغط هنا

NICMOS Imaging of a Damped Lyman-alpha Absorber at z=1.89 toward LBQS 1210+1731 : Constraints on Size and Star Formation Rate

161   0   0.0 ( 0 )
 نشر من قبل Varsha P. Kulkarni
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report results of a high-resolution imaging search (in rest frame H-$alpha$ and optical continuum) for the galaxy associated with the damped Lyman-$alpha$ (DLA) absorber at $z=1.892$ toward the $z_{em}=2.543$ quasar LBQS 1210+1731, using HST/NICMOS. After PSF subtraction, a feature is seen in both the broad-band and narrow-band images, at a projected separation of 0.25$arcsec$ from the quasar. If associated with the DLA, the object would be $approx 2-3$ $h_{70}^{-1}$ kpc in size with a flux of $9.8 pm 2.4$ $mu$Jy in the F160W filter, implying a luminosity at $lambda_{central}=5500$ {AA} in the rest frame of $1.5 times 10^{10}$ $h_{70}^{-2}$ L$_{odot}$ at $z=1.89$, for $q_{0}=0.5$. However, no significant H-$alpha$ emission is seen, suggesting a low star formation rate (SFR) (3 $sigma$ upper limit of 4.0 $h_{70}^{-2}$ M$_{odot}$ yr$^{-1}$), or very high dust obscuration. Alternatively, the object may be associated with the host galaxy of the quasar. H-band images obtained with the NICMOS camera 2 coronagraph show a much fainter structure $approx 4-5$ $h_{70}^{-1}$ kpc in size and containing four knots of continuum emission, located 0.7$arcsec$ away from the quasar. We have probed regions far closer to the quasar sight-line than in most previous studies of high-redshift intervening DLAs. The two objects we report mark the closest detected high-redshift DLA candidates yet to any quasar sight line. If the features in our images are associated with the DLA, they suggest faint, compact, somewhat clumpy objects rather than large, well-formed proto-galactic disks or spheroids.



قيم البحث

اقرأ أيضاً

We report the discovery of a super-damped Lyman-alpha absorber at $z_{abs}=2.2068$ toward QSO Q1135-0010 in the Sloan Digital Sky Survey, and follow-up VLT UVES spectroscopy. Voigt profile fit to the DLA line indicates log $N_{rm H I} = 22.05 pm 0.1$ . This is the second QSO DLA discovered to date with such high $N_{rm H I}$. We derive element abundances [Si/H] = $-1.10 pm 0.10$, [Zn/H] = $-1.06 pm 0.10$, [Cr/H] = $-1.55 pm 0.10$, [Ni/H] = $-1.60 pm 0.10$, [Fe/H] = $-1.76 pm 0.10$, [Ti/H] = $-1.69 pm 0.11$, [P/H] = $-0.93 pm 0.23$, and [Cu/H] = $-0.75 pm 0.14$. Our data indicate detection of Ly-$alpha$ emission in the DLA trough, implying a star formation rate of $sim$10 $M_{odot}$ yr$^{-1}$ in the absence of dust attenuation. C II$^{*} , lambda 1336$ absorption is also detected, suggesting SFR surface density $-2 < {rm log} , dot{psi_{*}} < 0$ $M_{odot}$ yr$^{-1}$ kpc$^{-2}$. We estimate electron density in the range $3.5 times 10^{-4}$ to 24.7 cm$^{-3}$ from C II$^{*}$/C II, and $sim$0.5-0.9 cm$^{-3}$ from Si II$^{*}$/Si II. Overall, this is a robustly star-forming, moderately enriched absorber, but with relatively low dust depletion. Fitting of the SDSS spectrum yields low reddening for Milky Way, LMC, or SMC extinction curves. No CO absorption is detected, and C I absorption is weak. The low dust and molecular content, reminiscent of some SMC sight-lines, may result from the lower metallicity, and a stronger radiation field (due to higher SFR). Finally, we compare this absorber with other QSO and GRB DLAs.
[abridged] Using stacked Sloan Digital Sky Survey spectra, we present the detection of [OII]3727,3730 nebular emission from galaxies hosting CaII and MgII absorption line systems. Both samples of absorbers, 345 CaII systems and 3461 MgII systems, spa n the redshift interval 0.4 < z < 1.3; all of the former and half the latter sample are expected to be bona-fide damped Lyman-alpha (DLA) absorbers. The measured star formation rate (SFR) per absorber from light falling within the SDSS fibre apertures (corresponding to physical radii of 6-9 h^-1 kpc) is 0.11-0.14 Msol/yr for the MgII-selected DLAs and 0.11-0.48 Msol/yr for the CaII absorbers. These results represent the first estimates of the average SFR in an absorption-selected galaxy population from the direct detection of nebular emission. Adopting the currently favoured model in which DLAs are large, with radii >9h^-1 kpc, and assuming no attenuation by dust, leads to the conclusion that the SFR per unit area of MgII-selected DLAs falls an order of magnitude below the predictions of the Schmidt law, which relates the SFR to the HI column density at z~0. The contribution of both DLA and CaII absorbers to the total observed star formation rate density in the redshift range 0.4 < z < 1.3, is small, <10% and <3% respectively. The result contrasts with the conclusions of Hopkins et al. that DLA absorbers can account for the majority of the total observed SFR density in the same redshift range. Our results effectively rule out a picture in which DLA absorbers are the sites in which a large fraction of the total SFR density at redshifts z < 1 occurs.
We report a detection of the 9.7 micrometer silicate absorption feature in a damped Lyman-alpha (DLA) system at z_{abs} = 0.524 toward AO0235+164, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope. The feature shows a broad sh allow profile over about 8-12 micrometers in the absorber rest frame and appears to be > 15 sigma significant in equivalent width. The feature is fit reasonably well by the silicate absorption profiles for laboratory amorphous olivine or diffuse Galactic interstellar clouds. To our knowledge, this is the first indication of 9.7 micrometer silicate absorption in a DLA. We discuss potential implications of this finding for the nature of the dust in quasar absorbers. Although the feature is relatively shallow (tau_{9.7} = 0.08-0.09), it is about 2 times deeper than expected from extrapolation of the tau_{9.7} vs. E(B-V) relation known for diffuse Galactic interstellar clouds. Further studies of the 9.7 micrometer silicate feature in quasar absorbers will open a new window on the dust in distant galaxies.
449 - Joseph D. Meiring 2010
We present deep ground based imaging of the environments of five QSOs that contain sub-Damped Lyman-alpha systems at z<1 with the SOAR telescope and SOI camera. We detect a clear surplus of galaxies in these small fields, supporting the assumption th at we are detecting the galaxies responsible for the absorption systems. Assuming these galaxies are at the redshift of the absorption line systems, we detect luminous L>L* galaxies for four of the five fields within 10 of the QSO. In contrast to previous imaging surveys of DLA systems at these redshifts, which indicate a range of morphological types and luminosities for the host galaxies of the systems, the galaxies we detect in these sub-DLA fields appear to be luminous (L>L*). In the case of the absorber towards Q1009-0026 at z=0.8866 we have spectroscopic confirmation that the candidate galaxy is at the redshift of the absorber, at an impact parameter of ~35 kpc with a luminosity of 3 < L/L* < 8 depending on the magnitude of the K-correction. These observations are in concordance with the view that sub-DLAs may be more representative of massive galaxies than DLA systems. The environments of the absorbers span a range of types, from the inner disk of a galaxy, the periphery of a luminous galaxy, and the outskirts of interacting galaxies. The large impact parameters to some of the candidate galaxies suggest that galactic outflows or tidal tails are likely responsible for the material seen in absorption. We find a weak correlation between N(HI) and the impact parameter at the 2 sigma level, which may be expected from the heterogeneous population of galaxies hosting the absorption line systems and random orientation angles. In addition, we detect a possible gravitationally lensed image of the BL-Lac object Q0826-2230.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا