ﻻ يوجد ملخص باللغة العربية
FIRBACK is a one of the deepest surveys performed at 170 microns with ISOPHOT onboard ISO, and is aimed at the study of cosmic far infrared background sources. About 300 galaxies are detected in an area of four square degrees, and source counts present a strong slope of 2.2 on an integral logN-logS plot, which cannot be due to cosmological evolution if no K-correction is present. The resolved sources account for less than 10% of the Cosmic Infrared Background at 170 microns. In order to understand the nature of the sources contributing to the CIB, and to explain deep source counts at other wavelengths, we have developed a phenomenological model, which constrains in a simple way the luminosity function evolution with redshift, and fits all the existing deep source counts from the mid-infrared to the submillimetre range. Images, materials and papers available on the FIRBACK web: http://wwwfirback.ias.u-psud.fr wwwfirback.ias.u-psud.fr
The FIRBACK (Far Infrared BACKground) survey is one of the deepest imaging surveys carried out at 170 microns with ISOPHOT onboard ISO, and is aimed at the study of the structure of the Cosmic Far Infrared Background. This paper provides the analysis
We present a detailed study of the brighter ($> 4sigma$ detections) sources in the 170$mu$m FIRBACK northern N1 ISO survey, with the help of complementary data in the optical, radio, and mid-IR domain. For 82% of them, an optical galaxy counterpart i
We compute the number counts of clusters of galaxies, the logN-logS relation, in several X-ray and submm bands on the basis of the Press-Schechter theory. We pay particular attention to a set of theoretical models which well reproduce the ROSAT 0.5-2
The main aim of this thesis is to reveal some interesting aspects of the purely affine theory of gravity and its cosmological implication. A particular attention will be devoted to its consequences when applied to cosmological inflation. Primarily, a
The massive neutrinos gravitational infall and their inprints left on the CMB temperature and matter density fluctuations power spectra are analysed taking into account the massive neutrino properties: the mass degeneracy, the phase space mixing, the lepton asymmetry.