ﻻ يوجد ملخص باللغة العربية
We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach which permits the study of several models which differ in their behavior at high density. Effects of Landau quantization in ultra-strong magnetic fields ($B>10^{14}$ Gauss) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for $B>10^{18}$ Gauss that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultra-strong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of $|H/B|$ never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields.
To relate constraints from nuclear physics to the tidal deformabilities of neutron stars, we construct a neutron star model that accepts input from a large collection of Skyrme density functions to calculate properties of 1.4 solar-mass neutron stars
Recent developments in the theory of pure neutron matter and experiments concerning the symmetry energy of nuclear matter, coupled with recent measurements of high-mass neutron stars, now allow for relatively tight constraints on the equation of stat
In this work we study the influence of a strong magnetic field on the composition of nuclear matter at T=0 including the anomalous magnetic moment (AMM) of baryons.
We study the effects of isovector-scalar meson $delta$ on the equation of state (EOS) of neutron star matter in strong magnetic fields. The EOS of neutron-star matter and nucleon effective masses are calculated in the framework of Lagrangian field th
We present an extension of a previous work where, assuming a simple free bosonic gas supplemented with a relativistic meand field model to describe the pure nucleonic part of the EoS, we studied the consequences that the first non-trivial hexaquark $