ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong and weak lensing analysis of cluster Abell 2219 based on optical and near infrared data

61   0   0.0 ( 0 )
 نشر من قبل Jocelyn Bezecourt
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a gravitational lensing study of the massive galaxy cluster A2219 (redshift 0.22). This investigation is based on multicolour images from U through H, which allows photometric redshifts to be estimated for the background sources. The redshifts provide useful extra information for the lensing models: we show how they can be used to identify a new multiple-image system (and rule out an old one), how this information can be used to anchor the mass model for the cluster, and how the redshifts can be used to construct optimal samples of background galaxies for a weak lensing analysis. Combining all results, we obtain the mass distribution in this cluster from the inner, strong lensing region, out to a radius of 1.5 Mpc. The mass profile is consistent with a singular isothermal model over this radius range. Parametric and non-parametric reconstructions of the mass distribution in the cluster are compared. The main features (elongation, sub-clumps, radial mass profile) are in good agreement.

قيم البحث

اقرأ أيضاً

We present the first detection of a gravitational depletion signal at near-infrared wavelengths, based on deep panoramic images of the cluster Abell 2219 (z=0.22) taken with the Cambridge Infrared Survey Instrument (CIRSI) at the prime focus of the 4 .2m William Herschel Telescope. Infrared studies of gravitational depletion offer a number of advantages over similar techniques applied at optical wavelengths, and can provide reliable total masses for intermediate redshift clusters. Using the maximum likelihood technique developed by Schneider, King & Erben (1999), we detect the gravitational depletion at the 3 sigma confidence level. By modeling the mass distribution as a singular isothermal sphere and ignoring uncertainty in the unlensed number counts, we find an Einstein radius of 13.7 +3.9/-4.2 arcsec (66% confidence limit). This corresponds to a projected velocity dispersion of approximately 800 km/s, in agreement with constraints from strongly-lensed features. For a Navarro, Frenk and White mass model, the radial dependence observed indicates a best-fitting halo scale length of 125/h kpc}. We investigate the uncertainties arising from the observed fluctuations in the unlensed number counts, and show that clustering is the dominant source of error. We extend the maximum likelihood method to include the effect of incompleteness, and discuss the prospects of further systematic studies of lensing in the near-infrared band.
We present a new gravitational lens model of the Hubble Frontier Fields cluster Abell 370 ($z = 0.375$) using imaging and spectroscopy from Hubble Space Telescope and ground-based spectroscopy. We combine constraints from a catalog of 1344 weakly len sed galaxies and 39 multiply-imaged sources comprised of 114 multiple images, including a system of multiply-imaged candidates at $z=7.93 pm 0.02$, to obtain a best-fit mass distribution using the cluster lens modeling code Strong and Weak Lensing United. As the only analysis of A370 using strong and weak lensing constraints from Hubble Frontier Fields data, our method provides an independent check on assumptions in other methods on the mass distribution. Convergence, shear, and magnification maps are made publicly available through the HFF website. We find that the model we produce is similar to models produced by other groups, with some exceptions due to the differences in lensing code methodology. In an effort to study how our total projected mass distribution traces light, we measure the stellar mass density distribution using Spitzer/Infrared Array Camera imaging. Comparing our total mass density to our stellar mass density in a radius of 0.3 Mpc, we find a mean projected stellar to total mass ratio of $langle f* rangle = 0.011 pm 0.003$ (stat.) using the diet Salpeter initial mass function. This value is in general agreement with independent measurements of $langle f* rangle$ in clusters of similar total mass and redshift.
75 - M. Bradac 2004
Weak gravitational lensing is considered to be one of the most powerful tools to study the mass and the mass distribution of galaxy clusters. However, the mass-sheet degeneracy transformation has limited its success. We present a novel method for a c luster mass reconstruction which combines weak and strong lensing information on common scales and can, as a consequence, break the mass-sheet degeneracy. We extend the weak lensing formalism to the inner parts of the cluster and combine it with the constraints from multiple image systems. We demonstrate the feasibility of the method with simulations, finding an excellent agreement between the input and reconstructed mass also on scales within and beyond the Einstein radius. Using a single multiple image system and photometric redshift information of the background sources used for weak and strong lensing analysis, we find that we are effectively able to break the mass-sheet degeneracy, therefore removing one of the main limitations on cluster mass estimates. We conclude that with high resolution (e.g. HST) imaging data the method can more accurately reconstruct cluster masses and their profiles than currently existing lensing techniques.
357 - Kenneth C. Wong 2017
We present a combined strong and weak lensing analysis of the J085007.6+360428 (J0850) field, which was selected by its high projected concentration of luminous red galaxies and contains the massive cluster Zwicky 1953. Using Subaru/Suprime-Cam $BVR_ {c}I_{c}i^{prime}z^{prime}$ imaging and MMT/Hectospec spectroscopy, we first perform a weak lensing shear analysis to constrain the mass distribution in this field, including the cluster at $z = 0.3774$ and a smaller foreground halo at $z = 0.2713$. We then add a strong lensing constraint from a multiply-imaged galaxy in the imaging data with a photometric redshift of $z approx 5.03$. Unlike previous cluster-scale lens analyses, our technique accounts for the full three-dimensional mass structure in the beam, including galaxies along the line of sight. In contrast with past cluster analyses that use only lensed image positions as constraints, we use the full surface brightness distribution of the images. This method predicts that the source galaxy crosses a lensing caustic such that one image is a highly-magnified fold arc, which could be used to probe the source galaxys structure at ultra-high spatial resolution ($< 30$ pc). We calculate the mass of the primary cluster to be $mathrm{M_{vir}} = 2.93_{-0.65}^{+0.71} times 10^{15}~mathrm{M_{odot}}$ with a concentration of $mathrm{c_{vir}} = 3.46_{-0.59}^{+0.70}$, consistent with the mass-concentration relation of massive clusters at a similar redshift. The large mass of this cluster makes J0850 an excellent field for leveraging lensing magnification to search for high-redshift galaxies, competitive with and complementary to that of well-studied clusters such as the HST Frontier Fields.
We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters selected from the CLASH survey. Our analysis combines constraints from 16-band HST observations and wide-field multi-color imaging taken primarily with Subaru/Suprime-Cam. We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all clusters. We find internal consistency of the ensemble mass calibration to be $le 5% pm 6%$ by comparison with the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample, we examine the concentration-mass relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $c|_{z=0.34} = 3.95 pm 0.35$ at $M_{200c} simeq 14times 10^{14}M_odot$ and an intrinsic scatter of $sigma(ln c_{200c}) = 0.13 pm 0.06$, in excellent agreement with LCDM predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos, namely, the NFW, Einasto, and DARKexp models, whereas the single power-law, cored isothermal and Burkert density profiles are disfavored by the data. We show that cuspy halo models that include the two-halo term provide improved agreement with the data. For the NFW halo model, we measure a mean concentration of $c_{200c} = 3.79^{+0.30}_{-0.28}$ at $M_{200c} = 14.1^{+1.0}_{-1.0}times 10^{14}M_odot$, demonstrating consistency between complementary analysis methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا