ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of the first X-ray selected large AGN group

31   0   0.0 ( 0 )
 نشر من قبل Frank Tesch
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have examined the spatial distribution of 856 AGN detected by the ROSAT All-Sky Survey (RASS) using a direct search for structures with the minimal spanning tree. The AGNs were compiled from an area of 7000 deg^2, in which optical identifications of RASS sources were made with the help of the digitized objective prism plates of the Hamburg Quasar Survey (HQS). Redshifts were taken from the literature or from own follow-up observations. The sample probes the spatial distribution at low redshifts, since the redshift distribution peaks at z=0.1. The application of the minimal spanning tree led to a 1.8 sigma discovery of an AGN group with 7 members in a volume V=140*75*75 h^-3Mpc^3 in the Pisces constellation. With a mean redshift z=0.27 this group is only the third discovered group at redshifts z<0.5. The RASS offers excellent possibilities to study large scale structure with AGNs at low redshifts, once these redshifts are determined.

قيم البحث

اقرأ أيضاً

36 - D. Engels 1998
We are searching for large-scale structures in the distribution of AGN discovered by the ROSAT All-Sky Survey. The RASS detected > 60000 X-ray objects, of which approximately 35% are AGN at z < 0.5. The surface density in the extragalactic sky is app roximately 0.5 AGN/deg^2, which has not been reached until now by any other survey for this redshift range. We efficiently single out the AGN among all the RASS sources using the Hamburg/RASS database of optical identifications, which contains presently 13867 entries. Follow-up spectroscopy of RASS AGN candidates identified in selected areas of the northern sky is underway to determine the spatial distribution of the AGN in these areas. In every area structures reminiscent of clusters and filaments are found on scales 50 - 100 h^{-1}Mpc. These structures have a similar size as the serendipitously discovered groups of AGN in optical surveys at higher redshifts. Samples of low redshift AGN drawn from the RASS are large enough to be used with samples of higher redshift to study evolutionary effects in the large-scale distribution of AGN.
Using the latest 70 month Swift-BAT catalog we examined hard X-ray selected Seyfert I galaxies which are relatively little known and little studied, and yet potentially promising to test the ionized relativistic reflection model. From this list we ch ose 13 sources which have been observed by XMM-Newton for less than 20 ks, in order to explore the broad band soft to hard X-ray properties with the analysis of combined XMM-Newton and Swift data. Out of these we found seven sources which exhibit potentially promising features of the relativistic disc reflection, such as a strong soft excess, a large Compton hump and/or a broadened Fe line. Longer observations of four of these sources with the currently operating satellite missions, such as Suzaku, XMM-Newton and NuStar and two others by such future missions as ASTRO-H, will be invaluable, in order to better understand the relativistic disc reflection closest to the central black hole and constrain such important effects of strong gravity as the black hole spin.
81 - Paolo Ciliegi 1996
Using a sample of 63 AGNs extracted from the $Einstein$ Extended Medium Sensitivity Survey (EMSS), we study the X-ray spectral properties of X-ray selected AGN in the 0.1$-$2.4 keV ROSAT band. These objects are all the EMSS AGN detected with more tha n 300 net counts in ROSAT PSPC images available from the public archive (as of May 31, 1995). A Maximum-Likelihood analysis is used to find the mean power-law spectral index $<alpha_p>$ and the intrinsic dispersion $sigma_p$. We find $<alpha_p>$=1.42 with $sigma_p$=0.44. This value is significantly steeper ($Delta alpha sim$0.4) than the mean $Einstein$/IPC spectral index obtained applying the ML analysis on the whole sample of EMSS AGN. This result shows that the soft excess already noted in optically selected AGN is present also in X-ray selected AGN. The relatively high value obtained for the intrinsic dispersion confirms that in the soft band AGN are characterized by a variety of spectral indices and the increase with respect to results obtained from the analysis of Einstein data ($Delta sigma_p sim$0.16) suggests a further broadening of the spectral index distribution as one moves to softer energies. A comparison between the mean spectral index of Radio-quiet and Radio-loud subsamples shows that the mean index of the RL sample is flatter than that of RQ, both in the IPC ($Delta alpha sim$0.3) and in the PSPC ($Delta alpha sim$0.4) data. This suggests that the additional X-ray component in RL AGN dominates the X-ray emission of RL AGN over almost two decades of energy ($sim$0.1$-$10 keV).
We present the first direct measurement of the mean Halo Occupation Distribution (HOD) of X-ray selected AGN in the COSMOS field at z < 1, based on the association of 41 XMM and 17 C-COSMOS AGN with member galaxies of 189 X-ray detected galaxy groups from XMM and Chandra data. We model the mean AGN occupation in the halo mass range logM_200[Msun] = 13-14.5 with a rolling-off power-law with the best fit index alpha = 0.06(-0.22;0.36) and normalization parameter f_a = 0.05(0.04;0.06). We find the mean HOD of AGN among central galaxies to be modelled by a softened step function at logMh > logMmin = 12.75 (12.10,12.95) Msun while for the satellite AGN HOD we find a preference for an increasing AGN fraction with Mh suggesting that the average number of AGN in satellite galaxies grows slower (alpha_s < 0.6) than the linear proportion (alpha_s = 1) observed for the satellite HOD of samples of galaxies. We present an estimate of the projected auto correlation function (ACF) of galaxy groups over the range of r_p = 0.1-40 Mpc/h at <z> = 0.5. We use the large-scale clustering signal to verify the agreement between the group bias estimated by using the observed galaxy groups ACF and the value derived from the group mass estimates. We perform a measurement of the projected AGN-galaxy group cross-correlation function, excluding from the analysis AGN that are within galaxy groups and we model the 2-halo term of the clustering signal with the mean AGN HOD based on our results.
We present a detailed description of the first direct measurement of the spatial correlation function of X-ray selected AGN. This result is based on an X-ray flux-limited sample of 219 AGN discovered in the contiguous 80.7 deg^2 region of the ROSAT N orth Ecliptic Pole (NEP) Survey. Clustering is detected at the 4 sigma level at comoving scales in the interval r = 5-60 h^-1 Mpc. Fitting the data with a power law of slope gamma=1.8, we find a correlation length of r_0 = 7.4 (+1.8, -1.9) h^-1 Mpc (Omega_M=0.3, Omega_Lambda=0.7). The median redshift of the AGN contributing to the signal is z_xi=0.22. This clustering amplitude implies that X-ray selected AGN are spatially distributed in a manner similar to that of optically selected AGN. Furthermore, the ROSAT NEP determination establishes the local behavior of AGN clustering, a regime which is poorly sampled in general. Combined with high-redshift measures from optical studies, the ROSAT NEP results argue that the AGN correlation strength essentially does not evolve with redshift, at least out to z~2.2. In the local Universe, X-ray selected AGN appear to be unbiased relative to galaxies and the inferred X-ray bias parameter is near unity, b_X~1. Hence X-ray selected AGN closely trace the underlying mass distribution. The ROSAT NEP AGN catalog, presented here, features complete optical identifications and spectroscopic redshifts. The median redshift, X-ray flux, and X-ray luminosity are z=0.41, f_X=1.1*10^-13 cgs, and L_X=9.2*10^43 h_70^-2 cgs (0.5-2.0 keV), respectively. Unobscured, type 1 AGN are the dominant constituents (90%) of this soft X-ray selected sample of AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا