ترغب بنشر مسار تعليمي؟ اضغط هنا

The Off State of GX 339-4

109   0   0.0 ( 0 )
 نشر من قبل Albert Kong
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.K.H. Kong




اسأل ChatGPT حول البحث

We report BeppoSAX and optical observations of the black hole candidate GX 339-4 during its X-ray `off state in 1999. The broad-band (0.8-50 keV) X-ray emission can be fitted by a single power law with spectral index, alpha ~1.6. The observed luminosity is 6.6e33 erg s^{-1} in the 0.5-10 keV band, which is at the higher end of the flux distribution of black hole soft X-ray transients in quiescence, comparable to that seen in GS 2023+338 and 4U 1630-47. An optical observation just before the BeppoSAX observation shows the source to be very faint at these wavelengths as well (B=20.1, V=19.2). By comparing with previously reported `off and low states (LS), we conclude that the `off state is actually an extension of the LS, i.e. a LS at lower intensities. We propose that accretion models such as the advection-dominated accretion flows are able to explain the observed properties in such a state.

قيم البحث

اقرأ أيضاً

146 - Q. C. Shui , H. X. Yin , S. Zhang 2021
We investigate systematically four outbursts of black hole system GX 339-4 observed by the Rossi X-ray Timing Explorer (RXTE) in both spectral and timing domains and find that these outbursts have some common properties although they experience diffe rent q tracks in the hardness-intensity diagram (HID). While the spectral indices are around 1.5 in low hard state (LHS), 2.4 in soft intermediate state (SIMS) and high soft state (HSS), the spectral parameters of thermal, non-thermal and reflection components vary significantly in transitions from LHS to HIMS. Also the quasi periodic oscillation (QPO) shows a peculiar behavior during the state transition between LHS and HIMS: the RMS drop of type C fundamental QPO is accompanied with showing-up of the second harmonic. Interestingly, the QPO RMS is found to have a similar linear relationship with the non-thermal fraction of emission in different outbursts. These findings provide more clues to our understanding the outburst of the black hole X-ray binary system.
289 - F. Fuerst 2016
We present an analysis of NuSTAR observations of a hard intermediate state of the transient black hole GX 339-4 taken in January 2015. As the source softened significantly over the course of the 1.3 d-long observation we split the data into 21 sub-se ts and find that the spectrum of all of them can be well described by a power-law continuum with an additional relativistically blurred reflection component. The photon index increases from ~1.69 to ~1.77 over the course of the observation. The accretion disk is truncated at around 9 gravitational radii in all spectra. We also perform timing analysis on the same 21 individual data sets, and find a strong type-C quasi-periodic oscillation (QPO), which increase in frequency from ~0.68 to ~1.05 Hz with time. The frequency change is well correlated with the softening of the spectrum. We discuss possible scenarios for the production of the QPO and calculate predicted inner radii in the relativistic precession model as well as the global disk mode oscillations model. We find discrepancies with respect to the observed values in both models unless we allow for a black hole mass of ~100 M_sun , which is highly unlikely. We discuss possible systematic uncertainties, in particular with the measurement of the inner accretion disk radius in the relativistic reflection model. We conclude that the combination of observed QPO frequencies and inner accretion disk radii, as obtained from spectral fitting, is difficult to reconcile with current models.
111 - P.-O. Petrucci 2013
The microquasar GX 339-4 was observed by Suzaku five times, spaced by a few days, during its transition back to the hard state at the end of its 2010-2011 outburst. The 2-10 keV source flux decreases by a factor ~10 between the beginning and the end of the monitoring. Simultaneous radio and OIR observations highlighted the re-ignition of the radio emission just before the beginning of the campaign, the maximum radio emission being reached between the two first Suzaku pointings, while the IR peaked a few weeks latter. A fluorescent iron line is always significantly detected. Fits with a gaussian or Laor profiles give statistically equivalent results. In the case of a Laor profile, fits of the five data sets simultaneously agree with a disk inclination angle of ~20 degrees. The disk inner radius is <10-30 R_g in the first two observations but almost unconstrained in the last three. A soft X-ray excess is also present in these two first observations. Fits with a multicolor disk component give disk inner radii in agreement with those obtained with the iron line fits. The use of a physically more realistic model, including a blurred reflection component and a comptonization continuum, give some hints of the increase of the disk inner radius but the significances are always weak. Interestingly, the addition of warm absorption significantly improves the fit of OBS1 while it is not needed in the other observations. The radio-jet re-ignition occurring between OBS1 and OBS2, these absorption features may indicate the natural evolution from a disk wind and a jet. The comparison with a long 2008 Suzaku observation of GX 339-4 in a persistent faint hard state where a narrow iron line clearly indicates a disk recession, is discussed.
We report on INTEGRAL observations of the bright black-hole transient GX 339-4 performed during the period August-September 2004. Our data cover three different spectral states, namely Hard/Intermediate State, Soft/Intermediate State and High/Soft St ate. We investigate the spectral variability of the source across the different spectral states. The hard X-ray spectrum becomes softer during the HIMS-to-SIMS transition, but it hardens when reaching the HSS state. A principal component analysis demonstrates that most of the variability occurs through two independent modes: a pivoting of the spectrum around 6 keV (responsible for 75% of the variance) and an intensity variation of the hard component (responsible for 21%). The pivoting is interpreted as due to changes in the soft cooling photon flux entering the corona, the second mode as fluctuations of the heating rate in the corona. Our spectral analysis of the spectra of GX 339-4 shows a high energy excess with respect to pure thermal Comptonisation models in the HIMS: a non-thermal power-law component seems to be requested by data. In all spectral states joint IBIS, SPI and JEM-X data are well represented by hybrid thermal/non-thermal Comptonisation (EQPAIR). The spectral evolution seems to be predominantly driven by a reduction of the ratio of the electron heating rate to the soft cooling photon flux in the corona, l_h/l_s. The inferred accretion disc soft thermal emission increases by about two orders of magnitude, while the Comptonised luminosity decreases by at most a factor of 3. This confirms that the softening we observed is due to a major increase in the flux of soft cooling photons in the corona associated with a modest reduction of the electron heating rate.
66 - K. Sriram , A.R. Rao , C. S. Choi 2010
We report the few hundred second anti-correlated soft lags between soft and hard energy bands in the source GX 339-4 using RXTE observations. In one observation, anti-correlated soft lags were observed using the ISGRI/INTEGRAL hard energy band and th e PCA/RXTE soft energy band light curves. The lags were observed when the source was in hard and soft intermediate states, i.e., in a steep power-law state.We found that the temporal and spectral properties were changed during the lag timescale. The anti-correlated soft lags are associated with spectral variability during which the geometry of the accretion disk is changed. The observed temporal and spectral variations are explained using the framework of truncated disk geometry. We found that during the lag timescale, the centroid frequency of quasi-periodic oscillation is decreased, the soft flux is decreased along with an increase in the hard flux, and the power-law index steepens together with a decrease in the disk normalization parameter. We argue that these changes could be explained if we assume that the hot corona condenses and forms a disk in the inner region of the accretion disk. The overall spectral and temporal changes support the truncated geometry of the accretion disk in the steep power-law state or in the intermediate state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا