ترغب بنشر مسار تعليمي؟ اضغط هنا

Phrase Retrieval Learns Passage Retrieval, Too

277   0   0.0 ( 0 )
 نشر من قبل Jinhyuk Lee
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Dense retrieval methods have shown great promise over sparse retrieval methods in a range of NLP problems. Among them, dense phrase retrieval-the most fine-grained retrieval unit-is appealing because phrases can be directly used as the output for question answering and slot filling tasks. In this work, we follow the intuition that retrieving phrases naturally entails retrieving larger text blocks and study whether phrase retrieval can serve as the basis for coarse-level retrieval including passages and documents. We first observe that a dense phrase-retrieval system, without any retraining, already achieves better passage retrieval accuracy (+3-5% in top-5 accuracy) compared to passage retrievers, which also helps achieve superior end-to-end QA performance with fewer passages. Then, we provide an interpretation for why phrase-level supervision helps learn better fine-grained entailment compared to passage-level supervision, and also show that phrase retrieval can be improved to achieve competitive performance in document-retrieval tasks such as entity linking and knowledge-grounded dialogue. Finally, we demonstrate how phrase filtering and vector quantization can reduce the size of our index by 4-10x, making dense phrase retrieval a practical and versatile solution in multi-granularity retrieval.



قيم البحث

اقرأ أيضاً

Most state-of-the-art open-domain question answering systems use a neural retrieval model to encode passages into continuous vectors and extract them from a knowledge source. However, such retrieval models often require large memory to run because of the massive size of their passage index. In this paper, we introduce Binary Passage Retriever (BPR), a memory-efficient neural retrieval model that integrates a learning-to-hash technique into the state-of-the-art Dense Passage Retriever (DPR) to represent the passage index using compact binary codes rather than continuous vectors. BPR is trained with a multi-task objective over two tasks: efficient candidate generation based on binary codes and accurate reranking based on continuous vectors. Compared with DPR, BPR substantially reduces the memory cost from 65GB to 2GB without a loss of accuracy on two standard open-domain question answering benchmarks: Natural Questions and TriviaQA. Our code and trained models are available at https://github.com/studio-ousia/bpr.
117 - Peng Shi , Rui Zhang , He Bai 2021
Dense retrieval has shown great success in passage ranking in English. However, its effectiveness in document retrieval for non-English languages remains unexplored due to the limitation in training resources. In this work, we explore different trans fer techniques for document ranking from English annotations to multiple non-English languages. Our experiments on the test collections in six languages (Chinese, Arabic, French, Hindi, Bengali, Spanish) from diverse language families reveal that zero-shot model-based transfer using mBERT improves the search quality in non-English mono-lingual retrieval. Also, we find that weakly-supervised target language transfer yields competitive performances against the generation-based target language transfer that requires external translators and query generators.
194 - Yingqi Qu , Yuchen Ding , Jing Liu 2020
In open-domain question answering, dense passage retrieval has become a new paradigm to retrieve relevant passages for finding answers. Typically, the dual-encoder architecture is adopted to learn dense representations of questions and passages for s emantic matching. However, it is difficult to effectively train a dual-encoder due to the challenges including the discrepancy between training and inference, the existence of unlabeled positives and limited training data. To address these challenges, we propose an optimized training approach, called RocketQA, to improving dense passage retrieval. We make three major technical contributions in RocketQA, namely cross-batch negatives, denoised hard negatives and data augmentation. The experiment results show that RocketQA significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions. We also conduct extensive experiments to examine the effectiveness of the three strategies in RocketQA. Besides, we demonstrate that the performance of end-to-end QA can be improved based on our RocketQA retriever.
In this paper we explore the effects of negative sampling in dual encoder models used to retrieve passages for automatic question answering. We explore four negative sampling strategies that complement the straightforward random sampling of negatives , typically used to train dual encoder models. Out of the four strategies, three are based on retrieval and one on heuristics. Our retrieval-based strategies are based on the semantic similarity and the lexical overlap between questions and passages. We train the dual encoder models in two stages: pre-training with synthetic data and fine tuning with domain-specific data. We apply negative sampling to both stages. The approach is evaluated in two passage retrieval tasks. Even though it is not evident that there is one single sampling strategy that works best in all the tasks, it is clear that our strategies contribute to improving the contrast between the response and all the other passages. Furthermore, mixing the negatives from different strategies achieve performance on par with the best performing strategy in all tasks. Our results establish a new state-of-the-art level of performance on two of the open-domain question answering datasets that we evaluated.
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system largely by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا