ترغب بنشر مسار تعليمي؟ اضغط هنا

The $n$-queens problem

141   0   0.0 ( 0 )
 نشر من قبل Candida Bowtell
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The famous $n$-queens problem asks how many ways there are to place $n$ queens on an $n times n$ chessboard so that no two queens can attack one another. The toroidal $n$-queens problem asks the same question where the board is considered on the surface of the torus and was asked by P{o}lya in 1918. Let $Q(n)$ denote the number of $n$-queens configurations on the classical board and $T(n)$ the number of toroidal $n$-queens configurations. P{o}lya showed that $T(n)>0$ if and only if $n equiv 1,5 mod 6$ and much more recently, in 2017, Luria showed that $T(n)leq ((1+o(1))ne^{-3})^n$ and conjectured equality when $n equiv 1,5 mod 6$. Our main result is a proof of this conjecture, thus answering P{o}lyas question asymptotically. Furthermore, we also show that $Q(n)geq((1+o(1))ne^{-3})^n$ for all $n$ sufficiently large, which was independently proved by Luria and Simkin. Combined with our main result and an upper bound of Luria, this completely settles a conjecture of Rivin, Vardi and Zimmmerman from 1994 regarding both $Q(n)$ and $T(n)$. Our proof combines a random greedy algorithm to count almost configurations with a complex absorbing strategy that uses ideas from the recently developed methods of randomised algebraic construction and iterative absorption.

قيم البحث

اقرأ أيضاً

Number the cells of a (possibly infinite) chessboard in some way with the numbers 0, 1, 2, ... Consider the cells in order, placing a queen in a cell if and only if it would not attack any earlier queen. The problem is to determine the positions of t he queens. We study the problem for a doubly-infinite chessboard of size Z x Z numbered along a square spiral, and an infinite single-quadrant chessboard (of size N x N) numbered along antidiagonals. We give a fairly complete solution in the first case, based on the Tribonacci word. There are connections with combinatorial games.
Let $p(n)$ denote the partition function. Desalvo and Pak proved the log-concavity of $p(n)$ for $n>25$ and the inequality $frac{p(n-1)}{p(n)}left(1+frac{1}{n}right)>frac{p(n)}{p(n+1)}$ for $n>1$. Let $r(n)=sqrt[n]{p(n)/n}$ and $Delta$ be the differe nce operator respect to $n$. Desalvo and Pak pointed out that their approach to proving the log-concavity of $p(n)$ may be employed to prove a conjecture of Sun on the log-convexity of ${r(n)}_{ngeq 61}$, as long as one finds an appropriate estimate of $Delta^2 log r(n-1)$. In this paper, we obtain a lower bound for $Delta^2log r(n-1)$, leading to a proof of this conjecture. From the log-convexity of ${r(n)}_{ngeq61}$ and ${sqrt[n]{n}}_{ngeq4}$, we are led to a proof of another conjecture of Sun on the log-convexity of ${sqrt[n]{p(n)}}_{ngeq27}$. Furthermore, we show that $limlimits_{n rightarrow +infty}n^{frac{5}{2}}Delta^2logsqrt[n]{p(n)}=3pi/sqrt{24}$. Finally, by finding an upper bound of $Delta^2 logsqrt[n-1]{p(n-1)}$, we prove an inequality on the ratio $frac{sqrt[n-1]{p(n-1)}}{sqrt[n]{p(n)}}$ analogous to the above inequality on the ratio $frac{p(n-1)}{p(n)}$.
Suppose we have a network that is represented by a graph $G$. Potentially a fire (or other type of contagion) might erupt at some vertex of $G$. We are able to respond to this outbreak by establishing a firebreak at $k$ other vertices of $G$, so that the fire cannot pass through these fortified vertices. The question that now arises is which $k$ vertices will result in the greatest number of vertices being saved from the fire, assuming that the fire will spread to every vertex that is not fully behind the $k$ vertices of the firebreak. This is the essence of the {sc Firebreak} decision problem, which is the focus of this paper. We establish that the problem is intractable on the class of split graphs as well as on the class of bipartite graphs, but can be solved in linear time when restricted to graphs having constant-bounded treewidth, or in polynomial time when restricted to intersection graphs. We also consider some closely related problems.
103 - Pu Qiao , Xingzhi Zhan 2020
We consider finite simple graphs. Given a graph $H$ and a positive integer $n,$ the Tur{a}n number of $H$ for the order $n,$ denoted ${rm ex}(n,H),$ is the maximum size of a graph of order $n$ not containing $H$ as a subgraph. ErdH{o}s posed the foll owing problem in 1990: For which graphs $H$ is it true that every graph on $n$ vertices and ${rm ex}(n,H)+1$ edges contains at least two $H$s? Perhaps this is always true. We solve the second part of this problem in the negative by proving that for every integer $kge 4,$ there exists a graph $H$ of order $k$ and at least two orders $n$ such that there exists a graph of order $n$ and size ${rm ex}(n,H)+1$ which contains exactly one copy of $H.$ Denote by $C_4$ the $4$-cycle. We also prove that for every integer $n$ with $6le nle 11,$ there exists a graph of order $n$ and size ${rm ex}(n,C_4)+1$ which contains exactly one copy of $C_4,$ but for $n=12$ or $n=13,$ the minimum number of copies of $C_4$ in a graph of order $n$ and size ${rm ex}(n,C_4)+1$ is $2.$
We prove that any quasirandom dense large graph in which all degrees are equal and even can be decomposed into any given collection of two-factors (2-regular spanning subgraphs). A special case of this result gives a new solution to the Oberwolfach problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا