ﻻ يوجد ملخص باللغة العربية
The famous $n$-queens problem asks how many ways there are to place $n$ queens on an $n times n$ chessboard so that no two queens can attack one another. The toroidal $n$-queens problem asks the same question where the board is considered on the surface of the torus and was asked by P{o}lya in 1918. Let $Q(n)$ denote the number of $n$-queens configurations on the classical board and $T(n)$ the number of toroidal $n$-queens configurations. P{o}lya showed that $T(n)>0$ if and only if $n equiv 1,5 mod 6$ and much more recently, in 2017, Luria showed that $T(n)leq ((1+o(1))ne^{-3})^n$ and conjectured equality when $n equiv 1,5 mod 6$. Our main result is a proof of this conjecture, thus answering P{o}lyas question asymptotically. Furthermore, we also show that $Q(n)geq((1+o(1))ne^{-3})^n$ for all $n$ sufficiently large, which was independently proved by Luria and Simkin. Combined with our main result and an upper bound of Luria, this completely settles a conjecture of Rivin, Vardi and Zimmmerman from 1994 regarding both $Q(n)$ and $T(n)$. Our proof combines a random greedy algorithm to count almost configurations with a complex absorbing strategy that uses ideas from the recently developed methods of randomised algebraic construction and iterative absorption.
Number the cells of a (possibly infinite) chessboard in some way with the numbers 0, 1, 2, ... Consider the cells in order, placing a queen in a cell if and only if it would not attack any earlier queen. The problem is to determine the positions of t
Let $p(n)$ denote the partition function. Desalvo and Pak proved the log-concavity of $p(n)$ for $n>25$ and the inequality $frac{p(n-1)}{p(n)}left(1+frac{1}{n}right)>frac{p(n)}{p(n+1)}$ for $n>1$. Let $r(n)=sqrt[n]{p(n)/n}$ and $Delta$ be the differe
Suppose we have a network that is represented by a graph $G$. Potentially a fire (or other type of contagion) might erupt at some vertex of $G$. We are able to respond to this outbreak by establishing a firebreak at $k$ other vertices of $G$, so that
We consider finite simple graphs. Given a graph $H$ and a positive integer $n,$ the Tur{a}n number of $H$ for the order $n,$ denoted ${rm ex}(n,H),$ is the maximum size of a graph of order $n$ not containing $H$ as a subgraph. ErdH{o}s posed the foll
We prove that any quasirandom dense large graph in which all degrees are equal and even can be decomposed into any given collection of two-factors (2-regular spanning subgraphs). A special case of this result gives a new solution to the Oberwolfach problem.