ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Architecture Search in operational context: a remote sensing case-study

209   0   0.0 ( 0 )
 نشر من قبل Tugdual Ceillier
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning has become in recent years a cornerstone tool fueling key innovations in the industry, such as autonomous driving. To attain good performances, the neural network architecture used for a given application must be chosen with care. These architectures are often handcrafted and therefore prone to human biases and sub-optimal selection. Neural Architecture Search (NAS) is a framework introduced to mitigate such risks by jointly optimizing the network architectures and its weights. Albeit its novelty, it was applied on complex tasks with significant results - e.g. semantic image segmentation. In this technical paper, we aim to evaluate its ability to tackle a challenging operational task: semantic segmentation of objects of interest in satellite imagery. Designing a NAS framework is not trivial and has strong dependencies to hardware constraints. We therefore motivate our NAS approach selection and provide corresponding implementation details. We also present novel ideas to carry out other such use-case studies.

قيم البحث

اقرأ أيضاً

186 - Miao Zhang , Huiqi Li , Shirui Pan 2019
One-Shot Neural architecture search (NAS) attracts broad attention recently due to its capacity to reduce the computational hours through weight sharing. However, extensive experiments on several recent works show that there is no positive correlatio n between the validation accuracy with inherited weights from the supernet and the test accuracy after re-training for One-Shot NAS. Different from devising a controller to find the best performing architecture with inherited weights, this paper focuses on how to sample architectures to train the supernet to make it more predictive. A single-path supernet is adopted, where only a small part of weights are optimized in each step, to reduce the memory demand greatly. Furthermore, we abandon devising complicated reward based architecture sampling controller, and sample architectures to train supernet based on novelty search. An efficient novelty search method for NAS is devised in this paper, and extensive experiments demonstrate the effectiveness and efficiency of our novelty search based architecture sampling method. The best architecture obtained by our algorithm with the same search space achieves the state-of-the-art test error rate of 2.51% on CIFAR-10 with only 7.5 hours search time in a single GPU, and a validation perplexity of 60.02 and a test perplexity of 57.36 on PTB. We also transfer these search cell structures to larger datasets ImageNet and WikiText-2, respectively.
Recent advances in adversarial attacks show the vulnerability of deep neural networks searched by Neural Architecture Search (NAS). Although NAS methods can find network architectures with the state-of-the-art performance, the adversarial robustness and resource constraint are often ignored in NAS. To solve this problem, we propose an Effective, Efficient, and Robust Neural Architecture Search (E2RNAS) method to search a neural network architecture by taking the performance, robustness, and resource constraint into consideration. The objective function of the proposed E2RNAS method is formulated as a bi-level multi-objective optimization problem with the upper-level problem as a multi-objective optimization problem, which is different from existing NAS methods. To solve the proposed objective function, we integrate the multiple-gradient descent algorithm, a widely studied gradient-based multi-objective optimization algorithm, with the bi-level optimization. Experiments on benchmark datasets show that the proposed E2RNAS method can find adversarially robust architectures with optimized model size and comparable classification accuracy.
Early methods in the rapidly developing field of neural architecture search (NAS) required fully training thousands of neural networks. To reduce this extreme computational cost, dozens of techniques have since been proposed to predict the final perf ormance of neural architectures. Despite the success of such performance prediction methods, it is not well-understood how different families of techniques compare to one another, due to the lack of an agreed-upon evaluation metric and optimization for different constraints on the initialization time and query time. In this work, we give the first large-scale study of performance predictors by analyzing 31 techniques ranging from learning curve extrapolation, to weight-sharing, to supervised learning, to zero-cost proxies. We test a number of correlation- and rank-based performance measures in a variety of settings, as well as the ability of each technique to speed up predictor-based NAS frameworks. Our results act as recommendations for the best predictors to use in different settings, and we show that certain families of predictors can be combined to achieve even better predictive power, opening up promising research directions. Our code, featuring a library of 31 performance predictors, is available at https://github.com/automl/naslib.
Neural architecture search (NAS) can have a significant impact in computer vision by automatically designing optimal neural network architectures for various tasks. A variant, binarized neural architecture search (BNAS), with a search space of binari zed convolutions, can produce extremely compressed models. Unfortunately, this area remains largely unexplored. BNAS is more challenging than NAS due to the learning inefficiency caused by optimization requirements and the huge architecture space. To address these issues, we introduce channel sampling and operation space reduction into a differentiable NAS to significantly reduce the cost of searching. This is accomplished through a performance-based strategy used to abandon less potential operations. Two optimization methods for binarized neural networks are used to validate the effectiveness of our BNAS. Extensive experiments demonstrate that the proposed BNAS achieves a performance comparable to NAS on both CIFAR and ImageNet databases. An accuracy of $96.53%$ vs. $97.22%$ is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a $40%$ faster search than the state-of-the-art PC-DARTS.
We propose a new method for learning the structure of convolutional neural networks (CNNs) that is more efficient than recent state-of-the-art methods based on reinforcement learning and evolutionary algorithms. Our approach uses a sequential model-b ased optimization (SMBO) strategy, in which we search for structures in order of increasing complexity, while simultaneously learning a surrogate model to guide the search through structure space. Direct comparison under the same search space shows that our method is up to 5 times more efficient than the RL method of Zoph et al. (2018) in terms of number of models evaluated, and 8 times faster in terms of total compute. The structures we discover in this way achieve state of the art classification accuracies on CIFAR-10 and ImageNet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا