ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable massively parallel computing using continuous-time data representation in nanoscale crossbar array

222   0   0.0 ( 0 )
 نشر من قبل Shijun Liang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The growth of connected intelligent devices in the Internet of Things has created a pressing need for real-time processing and understanding of large volumes of analogue data. The difficulty in boosting the computing speed renders digital computing unable to meet the demand for processing analogue information that is intrinsically continuous in magnitude and time. By utilizing a continuous data representation in a nanoscale crossbar array, parallel computing can be implemented for the direct processing of analogue information in real time. Here, we propose a scalable massively parallel computing scheme by exploiting a continuous-time data representation and frequency multiplexing in a nanoscale crossbar array. This computing scheme enables the parallel reading of stored data and the one-shot operation of matrix-matrix multiplications in the crossbar array. Furthermore, we achieve the one-shot recognition of 16 letter images based on two physically interconnected crossbar arrays and demonstrate that the processing and modulation of analogue information can be simultaneously performed in a memristive crossbar array.

قيم البحث

اقرأ أيضاً

114 - N.W. Phillips , H. Yu , S. Das 2020
Developing a comprehensive understanding of the modification of material properties by neutron irradiation is important for the design of future fission and fusion power reactors. Self-ion implantation is commonly used to mimic neutron irradiation da mage, however an interesting question concerns the effect of ion energy on the resulting damage structures. The reduction in the thickness of the implanted layer as the implantation energy is reduced results in the significant quandary: Does one attempt to match the primary knock-on atom energy produced during neutron irradiation or implant at a much higher energy, such that a thicker damage layer is produced? Here we address this question by measuring the full strain tensor for two ion implantation energies, 2 MeV and 20 MeV in self-ion implanted tungsten, a critical material for the first wall and divertor of fusion reactors. A comparison of 2 MeV and 20 MeV implanted samples is shown to result in similar lattice swelling. Multi-reflection Bragg coherent diffractive imaging (MBCDI) shows that implantation induced strain is in fact heterogeneous at the nanoscale, suggesting that there is a non-uniform distribution of defects, an observation that is not fully captured by micro-beam Laue diffraction. At the surface, MBCDI and high-resolution electron back-scattered diffraction (HR-EBSD) strain measurements agree quite well in terms of this clustering/non-uniformity of the strain distribution. However, MBCDI reveals that the heterogeneity at greater depths in the sample is much larger than at the surface. This combination of techniques provides a powerful method for detailed investigation of the microstructural damage caused by ion bombardment, and more generally of strain related phenomena in microvolumes that are inaccessible via any other technique.
Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units. We present optical dispersion engineering in a superlattice structure comprised of alternating layers of 2D excitonic chalcogenides and dielectric insulators. By carefully designing the unit cell parameters, we demonstrate > 90 % narrowband absorption in < 4 nm active layer excitonic absorber medium at room temperature, concurrently with enhanced photoluminescence in cm2 samples. These superlattices show evidence of strong light-matter coupling and exciton-polariton formation with geometry-tunable coupling constants. Our results demonstrate proof of concept structures with engineered optical properties and pave the way for a broad class of scalable, designer optical metamaterials from atomically-thin layers.
In this manuscript, we outline a reliable procedure to manufacture photonic nanostructures from single-crystal diamond (SCD). Photonic nanostructures, in our case SCD nanopillars on thin (< 1$mu$m) platforms, are highly relevant for nanoscale sensing . The presented top-down procedure includes electron beam lithography (EBL) as well as reactive ion etching (RIE). Our method introduces a novel type of inter-layer, namely silicon, that significantly enhances the adhesion of hydrogen silsesquioxane (HSQ) electron beam resist to SCD and avoids sample charging during EBL. In contrast to previously used adhesion layers, our silicon layer can be removed using a highly-selective RIE step which is not damaging HSQ mask structures. We thus refine published nanofabrication processes to ease a higher process reliability especially in the light of the advancing commercialization of SCD sensor devices.
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language (OpenCL) framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strat- egies are developed to obtain efficient simulations using multiple central processing units (CPUs) and GPUs.
We present a new approach to femtosecond direct laser writing lithography to pattern nanocavities in ferromagnetic thin films. To demonstrate the concept we irradiated 300~nm thin nickel films by single intense femtosecond laser pulses through the gl ass substrate and created complex surface landscapes at the nickel-air interface. Using a fluence above the ablation threshold the process is destructive and irradiation leads to the formation of 200~nm thin flakes of nickel around the ablation crater as seen by electron microscopy. By progressively lowering the peak laser fluence, slightly below the ablation threshold the formation of closed spallation cavities is demonstrated by interferometric microscopy. Systematic studies by electron and optical interferometric microscopies enabled us to gain an understanding of the thermo-mechanical mechanism leading to spallation at the solid-molten interface, a conclusion supported by molecular dynamics simulations. We achieved a control of the spallation process that enabled the fabrication of closed spallation nanocavities and their periodic arrangements. Due to their topology closed magnetic nanocavities can support unique couplings of multiple excitations (magnetic, optical, acoustic, spintronic). Thereby, they offer a unique physics playground, before unavailable, for magnetism, magneto-photonic and magneto-acoustic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا