ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated risk classification of colon biopsies based on semantic segmentation of histopathology images

226   0   0.0 ( 0 )
 نشر من قبل Jm Bokhorst
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Artificial Intelligence (AI) can potentially support histopathologists in the diagnosis of a broad spectrum of cancer types. In colorectal cancer (CRC), AI can alleviate the laborious task of characterization and reporting on resected biopsies, including polyps, the numbers of which are increasing as a result of CRC population screening programs, ongoing in many countries all around the globe. Here, we present an approach to address two major challenges in automated assessment of CRC histopathology whole-slide images. First, we present an AI-based method to segment multiple tissue compartments in the H&E-stained whole-slide image, which provides a different, more perceptible picture of tissue morphology and composition. We test and compare a panel of state-of-the-art loss functions available for segmentation models, and provide indications about their use in histopathology image segmentation, based on the analysis of a) a multi-centric cohort of CRC cases from five medical centers in the Netherlands and Germany, and b) two publicly available datasets on segmentation in CRC. Second, we use the best performing AI model as the basis for a computer-aided diagnosis system (CAD) that classifies colon biopsies into four main categories that are relevant pathologically. We report the performance of this system on an independent cohort of more than 1,000 patients. The results show the potential of such an AI-based system to assist pathologists in diagnosis of CRC in the context of population screening. We have made the segmentation model available for research use on https://grand-challenge.org/algorithms/colon-tissue-segmentation/.



قيم البحث

اقرأ أيضاً

We propose HookNet, a semantic segmentation model for histopathology whole-slide images, which combines context and details via multiple branches of encoder-decoder convolutional neural networks. Concentricpatches at multiple resolutions with differe nt fields of view are used to feed different branches of HookNet, and intermediate representations are combined via a hooking mechanism. We describe a framework to design and train HookNet for achieving high-resolution semantic segmentation and introduce constraints to guarantee pixel-wise alignment in feature maps during hooking. We show the advantages of using HookNet in two histopathology image segmentation tasks where tissue type prediction accuracy strongly depends on contextual information, namely (1) multi-class tissue segmentation in breast cancer and, (2) segmentation of tertiary lymphoid structures and germinal centers in lung cancer. Weshow the superiority of HookNet when compared with single-resolution U-Net models working at different resolutions as well as with a recently published multi-resolution model for histopathology image segmentation
Although generative adversarial network (GAN) based style transfer is state of the art in histopathology color-stain normalization, they do not explicitly integrate structural information of tissues. We propose a self-supervised approach to incorpora te semantic guidance into a GAN based stain normalization framework and preserve detailed structural information. Our method does not require manual segmentation maps which is a significant advantage over existing methods. We integrate semantic information at different layers between a pre-trained semantic network and the stain color normalization network. The proposed scheme outperforms other color normalization methods leading to better classification and segmentation performance.
Histological classification of colorectal polyps plays a critical role in both screening for colorectal cancer and care of affected patients. An accurate and automated algorithm for the classification of colorectal polyps on digitized histopathology slides could benefit clinicians and patients. Evaluate the performance and assess the generalizability of a deep neural network for colorectal polyp classification on histopathology slide images using a multi-institutional dataset. In this study, we developed a deep neural network for classification of four major colorectal polyp types, tubular adenoma, tubulovillous/villous adenoma, hyperplastic polyp, and sessile serrated adenoma, based on digitized histopathology slides from our institution, Dartmouth-Hitchcock Medical Center (DHMC), in New Hampshire. We evaluated the deep neural network on an internal dataset of 157 histopathology slide images from DHMC, as well as on an external dataset of 238 histopathology slide images from 24 different institutions spanning 13 states in the United States. We measured accuracy, sensitivity, and specificity of our model in this evaluation and compared its performance to local pathologists diagnoses at the point-of-care retrieved from corresponding pathology laboratories. For the internal evaluation, the deep neural network had a mean accuracy of 93.5% (95% CI 89.6%-97.4%), compared with local pathologists accuracy of 91.4% (95% CI 87.0%-95.8%). On the external test set, the deep neural network achieved an accuracy of 87.0% (95% CI 82.7%-91.3%), comparable with local pathologists accuracy of 86.6% (95% CI 82.3%-90.9%). If confirmed in clinical settings, our model could assist pathologists by improving the diagnostic efficiency, reproducibility, and accuracy of colorectal cancer screenings.
The Gleason score is the most important prognostic marker for prostate cancer patients but suffers from significant inter-observer variability. We developed a fully automated deep learning system to grade prostate biopsies. The system was developed u sing 5834 biopsies from 1243 patients. A semi-automatic labeling technique was used to circumvent the need for full manual annotation by pathologists. The developed system achieved a high agreement with the reference standard. In a separate observer experiment, the deep learning system outperformed 10 out of 15 pathologists. The system has the potential to improve prostate cancer prognostics by acting as a first or second reader.
400 - Delong Chen , Shunhui Ji , Fan Liu 2020
The pandemic of COVID-19 has caused millions of infections, which has led to a great loss all over the world, socially and economically. Due to the false-negative rate and the time-consuming of the conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, diagnosing based on X-ray images and Computed Tomography (CT) images has been widely adopted. Therefore, researchers of the computer vision area have developed many automatic diagnosing models based on machine learning or deep learning to assist the radiologists and improve the diagnosing accuracy. In this paper, we present a review of these recently emerging automatic diagnosing models. 70 models proposed from February 14, 2020, to July 21, 2020, are involved. We analyzed the models from the perspective of preprocessing, feature extraction, classification, and evaluation. Based on the limitation of existing models, we pointed out that domain adaption in transfer learning and interpretability promotion would be the possible future directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا