ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetohydrodynamic turbulence and propagation of cosmic rays: theory confronted with observations

430   0   0.0 ( 0 )
 نشر من قبل Huirong Yan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Huirong Yan




اسأل ChatGPT حول البحث

Cosmic ray propagation is determined by the properties of interstellar turbulence. The multiphase nature of interstellar medium (ISM) and diversity of driving mechanisms give rise to spatial variation of turbulence properties. Meanwhile, precision astroparticle experiments pose challenges to the conventional picture of homogeneous and isotropic transport of cosmic rays (CRs). We are beginning a new chapter of CR propagation research when studies of particle transport and interstellar turbulence confront each other. Here we review our recent developement on understandings of magnetohydrodynamic (MHD) turbulence and its connection to the fundamental processes governing cosmic ray propagation, different regimes of particle transport, that are augmented with observational discovery and analysis from multi-wavelength observations.



قيم البحث

اقرأ أيضاً

90 - Alex Lazarian , Siyao Xu 2021
As the fundamental physical process with many astrophysical implications, the diffusion of cosmic rays (CRs) is determined by their interaction with magnetohydrodynamic (MHD) turbulence. We consider the magnetic mirroring effect arising from MHD turb ulence on the diffusion of CRs. Due to the intrinsic superdiffusion of turbulent magnetic fields, CRs with large pitch angles that undergo mirror reflection, i.e., bouncing CRs, are not trapped between magnetic mirrors, but move diffusively along the magnetic field, leading to a new type of parallel diffusion. This diffusion is in general slower than the diffusion of non-bouncing CRs with small pitch angles that undergo gyroresonant scattering. The critical pitch angle at the balance between magnetic mirroring and pitch-angle scattering is important for determining the diffusion coefficients of both bouncing and non-bouncing CRs and their scalings with the CR energy. We find non-universal energy scalings of diffusion coefficients, depending on the properties of MHD turbulence.
This work has the main objective to provide a detailed investigation of cosmic ray propagation in magnetohydrodynamic turbulent fields generated by forcing the fluid velocity field at large scales. It provides a derivation of the particle mean free p ath dependences in terms of the turbulence level described by the Alfvenic Mach number and in terms of the particle rigidity. We use an upgrade version of the magnetohydrodynamic code {tt RAMSES} which includes a forcing module and a kinetic module and solve the Lorentz equation for each particle. The simulations are performed using a 3 dimension periodical box in the test-particle and magnetostatic limits. The forcing module is implemented using an Ornstein-Uhlenbeck process. An ensemble average over a large number of particle trajectories is applied to reconstruct the particle mean free paths. We derive the cosmic ray mean free paths in terms of the Alfvenic Mach numbers and particle reduced rigidities in different turbulence forcing geometries. The reduced particle rigidity is $rho=r_L/L$ where $r_L$ is the particle Larmor radius and $L$ is the simulation box length related to the turbulence coherence or injection scale $L_{inj}$ by $L sim 5 L_{inj}$. We have investigated with a special attention compressible and solenoidal forcing geometries. We find that compressible forcing solutions are compatible with the quasi-linear theory or more advanced non-linear theories which predict a rigidity dependence as $rho^{1/2}$ or $rho^{1/3}$. Solenoidal forcing solutions at least at low or moderate Alfvenic numbers are not compatible with the above theoretical expectations and require more refined arguments to be interpreted. It appears especially for Alfvenic Mach numbers close to one that the wandering of field lines controls perpendicular mean free path solutions whatever the forcing geometry.
Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheet-like coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence whi ch has great importance for observations of solar flares and other space/astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, flare events, responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power law index close to -1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.
143 - Luigi Tibaldo IRAP 2021
Continuum gamma-ray emission produced by interactions of cosmic rays with interstellar matter and radiation fields is a probe of non-thermal particle populations in galaxies. After decades of continuous improvements in experimental techniques and an ever-increasing sky and energy coverage, gamma-ray observations reveal in unprecedented detail the properties of galactic cosmic rays. A variety of scales and environments are now accessible to us, from the local interstellar medium near the Sun and the vicinity of cosmic-ray accelerators, out to the Milky Way at large and beyond, with a growing number of gamma-ray emitting star-forming galaxies. Gamma-ray observations have been pushing forward our understanding of the life cycle of cosmic rays in galaxies and, combined with advances in related domains, they have been challenging standard assumptions in the field and have spurred new developments in modelling approaches and data analysis methods. We provide a review of the status of the subject and discuss perspectives on future progress.
We explore the physics of the gyro-resonant cosmic ray streaming instability (CRSI) including the effects of ion-neutral (IN) damping. This is the main damping mechanism in (partially-ionized) atomic and molecular gas, which are the primary component s of the interstellar medium (ISM) by mass. Limitation of CRSI by IN damping is important in setting the amplitude of Alfven waves that scatter cosmic rays and control galactic-scale transport. Our study employs the MHD-PIC hybrid fluid-kinetic numerical technique to follow linear growth as well as post-linear and saturation phases. During the linear phase of the instability -- where simulations and analytical theory are in good agreement -- IN damping prevents wave growth at small and large wavelengths, with the unstable bandwidth lower for higher ion-neutral collision rate $ u_{rm in}$. Purely MHD effects during the post-linear phase extend the wave spectrum towards larger $k$. In the saturated state, the cosmic ray distribution evolves toward greater isotropy (lower streaming velocity) by scattering off of Alven waves excited by the instability. In the absence of low-$k$ waves, CRs with sufficiently high momentum are not isotropized. The maximum wave amplitude and rate of isotropization of the distribution function decreases at higher $ u_{rm in}$. When the IN damping rate approaches the maximum growth rate of CSRI, wave growth and isotropization is suppressed. Implications of our results for CR transport in partially ionized ISM phases are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا