ﻻ يوجد ملخص باللغة العربية
We study correlations between the harmonic flow vectors squared measured at different transverse momenta. One of the flow harmonics squared is taken at a fixed transverse momentum and correlated to the momentum averaged harmonic flow squared of the same order. Such four particle correlators, dependent on transverse momentum, have been recently measured experimentally. The correlation based on four-particle correlators allows the independent measurement of the flow vector and flow magnitude correlation coefficient. Also, the correlation of the harmonic flow angles as a function of transverse momentum can be extracted. Results are compared to the preliminary data of the ALICE Collaboration. We also present the predictions for the momentum dependent correlation coefficient between mixed flow harmonics. The correlations between squares of mixed harmonics can serve as a way to independently measure the flow vector, flow magnitude, and flow angle correlations, and could be used to gain additional information on the fluctuating initial state and the dynamics in heavy-ion collisions.
Higher order symmetric cumulants of global collective observables in heavy ion collisions are studied. The symmetric cumulants can be straightforwardly constructed for scalar observables: the average transverse momentum, the multiplicity, and the squ
The collective harmonic flow in heavy-ion collisions correlates particles at all transverse momenta to be emitted preferably some directions. The factorization breaking coefficient measures the small decorrelation of the flow harmonics at two differe
The dynamical development of expanding Quark-gluon Plasma (QGP) flow is studied in a 3+1D fluid dynamical model with a globally symmetric, initial condition. We minimize fluctuations arising from complex dynamical processes at finite impact parameter
The correlation between the harmonic flow and the transverse flow in relativistic heavy ion collisions is calculated in the hydrodynamic model. The partial correlation coefficient, corrected for fluctuations of multiplicity, is compared to experiment
The directed flow of particles produced in ultrarelativistic heavy ion collisions at SPS and RHIC is so small that currently available methods of analysis are at the border of applicability. Standard two-particle and flow-vector methods are biased by