ترغب بنشر مسار تعليمي؟ اضغط هنا

From Quantum Groups to Liouville and Dilaton Quantum Gravity

161   0   0.0 ( 0 )
 نشر من قبل Thomas Mertens
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the underlying quantum group symmetry of 2d Liouville and dilaton gravity models, both consolidating known results and extending them to the cases with $mathcal{N} = 1$ supersymmetry. We first calculate the mixed parabolic representation matrix element (or Whittaker function) of $text{U}_q(mathfrak{sl}(2, mathbb{R}))$ and review its applications to Liouville gravity. We then derive the corresponding matrix element for $text{U}_q(mathfrak{osp}(1|2, mathbb{R}))$ and apply it to explain structural features of $mathcal{N} = 1$ Liouville supergravity. We show that this matrix element has the following properties: (1) its $qto 1$ limit is the classical $text{OSp}^+(1|2, mathbb{R})$ Whittaker function, (2) it yields the Plancherel measure as the density of black hole states in $mathcal{N} = 1$ Liouville supergravity, and (3) it leads to $3j$-symbols that match with the coupling of boundary vertex operators to the gravitational states as appropriate for $mathcal{N} = 1$ Liouville supergravity. This object should likewise be of interest in the context of integrability of supersymmetric relativistic Toda chains. We furthermore relate Liouville (super)gravity to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that the quantization of the target space Poisson structure in the (graded) Poisson sigma model description leads directly to the quantum group $text{U}_q(mathfrak{sl}(2, mathbb{R}))$ or the quantum supergroup $text{U}_q(mathfrak{osp}(1|2, mathbb{R}))$.



قيم البحث

اقرأ أيضاً

We define a three-dimensional quantum theory of gravity as the holographic dual of the Liouville conformal field theory. The theory is consistent and unitary by definition. The corresponding theory of gravity with negative cosmological constant has p eculiar properties. The quantum theory has no normalisable AdS3 vacuum. The model contains primary black holes with zero spin. All states can be interpreted as black holes dressed with boundary gravitons. There is a unique universal interaction between these states consistent with unitarity and the conformal symmetry of the model. This theory of gravity, though conceptually isolated from other models of quantum gravity, is worth scrutinising.
153 - V.de Alfaro 2008
General properties of a class of two-dimensional dilaton gravity (DG) theories with multi-exponential potentials are studied and a subclass of these theories, in which the equations of motion reduce to Toda and Liouville equations, is treated in deta il. A combination of parameters of the equations should satisfy a certain constraint that is identified and solved for the general multi-exponential model. From the constraint it follows that in DG theories the integrable Toda equations, generally, cannot appear without accompanying Liouville equations. We also show how the wave-like solutions of the general Toda-Liouville systems can be simply derived. In the dilaton gravity theory, these solutions describe nonlinear waves coupled to gravity as well as static states and cosmologies. A special attention is paid to making the analytic structure of the solutions of the Toda equations as simple and transparent as possible, with the aim to gain a better understanding of realistic theories reduced to dimensions 1+1 and 1+0 or 0+1.
In the investigation and resolution of the cosmological constant problem the inclusion of the dynamics of quantum gravity can be a crucial step. In this work we suggest that the quantum constraints in a canonical theory of gravity can provide a way o f addressing the issue: we consider the case of two-dimensional quantum dilaton gravity non-minimally coupled to a U(1) gauge field, in the presence of an arbitrary number of massless scalar matter fields, intended also as an effective description of highly symmetrical higher-dimensional models. We are able to quantize the system non-perturbatively and obtain an expression for the cosmological constant Lambda in terms of the quantum physical states, in a generalization of the usual QFT approach. We discuss the role of the classical and quantum gravitational contributions to Lambda and present a partial spectrum of values for it.
As we have shown in the previous work, using the formalism of matrix and eigenvalue models, to a given classical algebraic curve one can associate an infinite family of quantum curves, which are in one-to-one correspondence with singular vectors of a certain (e.g. Virasoro or super-Virasoro) underlying algebra. In this paper we reformulate this problem in the language of conformal field theory. Such a reformulation has several advantages: it leads to the identification of quantum curves more efficiently, it proves in full generality that they indeed have the structure of singular vectors, it enables identification of corresponding eigenvalue models. Moreover, this approach can be easily generalized to other underlying algebras. To illustrate these statements we apply the conformal field theory formalism to the case of the Ramond version of the super-Virasoro algebra. We derive two classes of corresponding Ramond super-eigenvalue models, construct Ramond super-quantum curves that have the structure of relevant singular vectors, and identify underlying Ramond super-spectral curves. We also analyze Ramond multi-Penner models and show that they lead to supersymmetric generalizations of BPZ equations.
In this note, we consider the question of classicality for the theory which is known to be the effective description of two-dimensional black holes - the Morse quantum mechanics. We calculate the Wigner function and the Fisher information characteriz ing classicality/quantumness of single-particle systems and briefly discuss further directions to study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا