ﻻ يوجد ملخص باللغة العربية
The prompt emission of most gamma-ray bursts (GRBs) typically exhibits a non-thermal Band component. The synchrotron radiation in the popular internal shock model is generally put forward to explain such a non-thermal component. However, the low-energy photon index $alpha sim -1.5$ predicted by the synchrotron radiation is inconsistent with the observed value $alpha sim -1$. Here, we investigate the evolution of a magnetic field during propagation of internal shocks within an ultrarelativistic outflow, and revisit the fast cooling of shock-accelerated electrons via synchrotron radiation for this evolutional magnetic field. We find that the magnetic field is first nearly constant and then decays as $Bpropto t^{-1}$, which leads to a reasonable range of the low-energy photon index, $-3/2 < alpha < -2/3$. In addition, if a rising electron injection rate during a GRB is introduced, we find that $alpha$ reaches $-2/3$ more easily. We thus fit the prompt emission spectra of GRB 080916c and GRB~080825c.
Gamma-ray Bursts (GRBs) prompt emission spectra are often fitted with the empirical Band function, namely two power laws smoothly connected. The typical slope of the low energy (sub-MeV) power law is $alpha_{B}simeq -1$. In a small fraction of long G
The radiative process responsible for gamma-Ray Burst (GRB) prompt emission has not been identified yet. If dominated by fast-cooling synchrotron radiation, the part of the spectrum immediately below the $ u F_ u$ peak energy should display a power-l
Gamma-ray emission at energies >100MeV has been detected from nine novae using the Fermi-LAT, and it can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the
We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. We take the bur
The counter jet of a short gamma-ray burst (sGRB) has not yet been observed, while recent discoveries of gravitational waves (GWs) from a binary neutron star (NS) merger GW170817 and the associated sGRB 170817A have demonstrated that off-axis sGRB je