ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Learning Optimized Search for the $Z$ from $U(1)_{L_mu-L_tau}$ at the LHC

96   0   0.0 ( 0 )
 نشر من قبل Zhongyi Zhang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Extending the Standard Model (SM) by a $U(1)_{L_mu-L_tau}$ group gives potentially significant new contributions to $g_mu-2$, allows the construction of realistic neutrino mass matrices, incorporates violation of lepton universality violation, and offers an anomaly-free mediator for a Dark Matter (DM) sector. In a recent analysis we showed that published LHC searches are not very sensitive to this model. Here we apply several Machine Learning (ML) algorithms in order to distinguish this model from the SM using simulated LHC data. In particular, we optimize the $3mu$-signal, which has a considerably larger cross section than the $4mu$-signal. Furthermore, since the $2$-muon plus missing $E_T$ final state gets contributions from diagrams involving DM particles, we optimize it as well. We find greatly improved sensitivity, which already for $36$ fb$^{-1}$ of data exceeds the combination of published LHC and non-LHC results. We also emphasize the usefulness of Boosted Decision Trees which, unlike Neural Networks, easily allow to extract additional information from the data which directly connect to the theoretical model. The same scheme could be used to analyze other models.



قيم البحث

اقرأ أيضاً

We study a model with $U(1)_{L_mu - L_tau}$ gauge symmetry and discuss collider searches for a scalar boson, which breaks $U(1)_{L_mu - L_tau}$ symmetry spontaneously, decaying into light $Z$ gauge boson. In this model, the new gauge boson, $Z$, with a mass lighter than $mathcal{O}(100)$ MeV, plays a role in explaining the anomalous magnetic moment of muon via one-loop contribution. For the gauge boson to have such a low mass, the scalar boson, $phi$ with $mathcal{O}(100)$ GeV mass appears associated with the symmetry breaking. We investigate experimental constraints on $U(1)_{L_mu - L_tau}$ gauge coupling, kinetic mixing, and mixing between the SM Higgs and $phi$. Then collider search is discussed considering $phi$ production followed by decay process $phi to Z Z$ at the large hadron collider and the international linear collider. We also estimate discovery significance at the linear collider taking into account relevant kinematical cut effects.
We consider a neutrinophilic $U(1)$ extension of the standard model (SM) which couples only to SM isosinglet neutral fermions, charged under the new group. The neutral fermions couple to the SM matter fields through Yukawa interactions. The neutrinos in the model get their masses from a standard inverse-seesaw mechanism while an added scalar sector is responsible for the breaking of the gauged $U(1)$ leading to a light neutral gauge boson ($Z$) which has minimal interaction with the SM sector. We study the phenomenology of having such a light $Z$ in the context of neutrinophilic interactions as well as the role of allowing kinetic mixing between the new $U(1)$ group with the SM hypercharge group. We show that current experimental searches allow for a very light $Z$ if it does not couple to SM fields directly and highlight the search strategies at the LHC. We observe that multi-lepton final states in the form of $(4ell + mET)$ and $(3ell + 2j + mET)$ could be crucial in discovering such a neutrinophilic gauge boson lying in a mass range of $200$--$500$ GeV.
We study the possibilities on the search of the light and weakly interacting gauge boson in the gauged $L_mu - L_tau$ model. Introducing the kinetic mixing at the tree-level, the allowed parameter regions for the gauge coupling and kinetic mixing par ameter are presented. Then, we analyze one photon plus missing event within the allowed region and show that search for the light gauge boson will be possible at Belle-II experiment. We also analyze neutrino trident production process in neutrino beam experiments.
175 - Patrick Foldenauer 2018
As experimental null results increase the pressure on heavy weakly interacting massive particles (WIMPs) as an explanation of thermal dark matter (DM), it seems timely to explore previously overlooked regions of the WIMP parameter space. In this work we extend the minimal gauged $U(1)_{L_mu-L_tau}$ model studied in cite{Bauer:2018onh} by a light (MeV-scale) vector-like fermion $chi$. Taking into account constraints from cosmology, direct and indirect detection we find that the standard benchmark of $M_V=3 m_chi$ for DM coupled to a vector mediator is firmly ruled out for unit DM charges. However, exploring the near-resonance region $M_Vgtrsim 2 m_chi$ we find that this model can simultaneously explain the DM relic abundance $Omega h^2 =0.12$ and the $(g-2)_mu$ anomaly. Allowing for small charge hierarchies of $lesssimmathcal{O}(10)$, we identify a second window of parameter space in the few-GeV region, where $chi$ can account for the full DM relic density.
Models of gauged $U(1)_{L_mu-L_tau}$ can provide a solution to the long-standing discrepancy between the theoretical prediction for the muon anomalous magnetic moment and its measured value. The extra contribution is due to a new light vector mediato r, which also helps to alleviate an existing tension in the determination of the Hubble parameter. In this article, we explore ways to probe this solution via the scattering of solar neutrinos with electrons and nuclei in a range of experiments and considering high and low solar metallicity scenarios. In particular, we reevaluate Borexino constraints on neutrino-electron scattering, finding them to be more stringent than previously reported, and already excluding a part of the $(g-2)_mu$ explanation with mediator masses smaller than $2times10^{-2}$ GeV. We then show that future direct dark matter detectors will be able to probe most of the remaining solution. Due to its large exposure, LUX-ZEPLIN will explore regions with mediator masses up to $5times10^{-2}$ GeV and DARWIN will be able to extend the search beyond $10^{-1}$ GeV, thereby covering most of the area compatible with $(g-2)_mu$. For completeness, we have also computed the constraints derived from the recent XENON1T electron recoil search and from the CENNS-10 LAr detector, showing that none of them excludes new areas of the parameter space. Should the excess in the muon anomalous magnetic moment be confirmed, our work suggests that direct detection experiments could provide crucial information with which to test the $U(1)_{L_mu-L_tau}$ solution, complementary to efforts in neutrino experiments and accelerators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا