ﻻ يوجد ملخص باللغة العربية
We investigate how the derivative expansion in the HAL QCD method works to extract physical observables, using a separable potential in quantum mechanics, which is solvable but highly non-local in the coordinate system. We consider three cases for inputs to determine the HAL QCD potential in the derivative expansion, (1) energy eigenfunctions (2) time-dependent wave functions as solutions to the time dependent Schrodinger equation with some boundary conditions (3) time-dependent wave function made by a linear combination of finite number of eigenfunctions at low energy to mimic the finite volume effect. We have found that, for all three cases, the potentials provide reasonable scattering phase shifts even at the leading order of the derivative expansion, and they give more accurate results as the order of the expansion increases. By comparing the above results with those from the formal derivative expansion for the separable potential, we conclude that the derivative expansion is not a way to obtain the potential but a method to extract physical observables such as phase shifts and binding energies, and that the scattering phase shifts from the derivative expansion in the HAL QCD method converge to the exact ones much faster than those from the formal derivative expansion of the separable potential.
A formalism is given to hermitize the HAL QCD potential, which needs to be non-hermitian except the leading order (LO) local term in the derivative expansion as the Nambu-Bethe-Salpeter (NBS) wave functions for different energies are not orthogonal t
We make a detailed comparison between the direct method and the HAL QCD potential method for the baryon-baryon interactions, taking the $XiXi$ system at $m_pi= 0.51$ GeV in 2+1 flavor QCD and using both smeared and wall quark sources. The energy shif
In this paper, we perform the first application of the hybrid method (exact low modes plus stochastically estimated high modes) for all-to-all propagators to the HAL QCD method. We calculate the HAL QCD potentials in the $I=2$ $pipi$ scattering in or
In this report, we discuss some theoretical and practical progresses in the HAL QCD potential method. We first clarify the issue of the derivative expansion for the non-local potential in the HAL QCD method. As the non-local potential in the original
The $XiXi$ interaction in the $^1$S$_0$ channel is studied to examine the convergence of the derivative expansion of the non-local HAL QCD potential at the next-to-next-to-leading order (N$^2$LO). We find that (i) the leading order potential from the