ترغب بنشر مسار تعليمي؟ اضغط هنا

London penetration depth measurements using tunnel diode resonators

141   0   0.0 ( 0 )
 نشر من قبل Ruslan Prozorov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The London penetration depth $lambda$ is the basic length scale for electromagnetic behavior in a superconductor. Precise measurements of $lambda$ as a function of temperature, field, and impurity scattering have been instrumental in revealing the nature of the order parameter and pairing interactions in a variety of superconductors discovered over the past decades. Here we recount our development of the tunnel-diode resonator technique to measure $lambda$ as a function of temperature and field in small single crystal samples. We discuss the principles and applications of this technique to study unconventional superconductivity in the copper oxides and other materials such as iron-based superconductors. The technique has now been employed by several groups worldwide as a precision measurement tool for the exploration of new superconductors.



قيم البحث

اقرأ أيضاً

114 - T. Klein , P. Rodiere , 2012
Cho et al. [Phys. Rev. B, 84, 174502 (2011)] have reported on the temperature dependence of the London penetration depth deduced from Tunnel Diode Oscillator (TDO) measurements in optimally doped Fe(Se,Te) single crystals. According to their analysis , these measurements chould suggest a nodeless two-gap pairing symmetry with strong pair breaking effects. However, to reach this conclusion, the authors fit the temperature dependence of the superfluid density with a two band {it clean} limit model which is incompatible with the presence of strong pair breaking effects, deduced from the $T^n$ temperature dependence of the London penetration depth below $T_c/3$. Moreover they claim that their results are also ruling out the suggestion that surface conditions can significantly affect the TDO data but this conclusion is based on one very specific damaging process, and is completely ignoring the large dispersion in the previously published TDO data.
153 - R. T. Gordon , N. Ni , C. Martin 2008
The London penetration depth, $lambda(T)$, has been measured in several single crystals of Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$. Thermodynamic, electromagnetic, and structural characterization measurements confirm that these crystals are of excellent quality. The observed low temperature variation of $lambda(T)$ follows a power-law, $Delta lambda (T) sim T^n$ with $n=2.4 pm 0.1$, indicating the existence of normal quasiparticles down to at least $0.02T_c$. This is in contrast to recent penetration depth measurements on single crystals of NdFeAsO$_{1-x}$F$_x$ and SmFeAsO$_{1-x}$F$_x$, which indicate an anisotropic but nodeless gap. We propose that a more three-dimensional character in the electronic structure of Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$ may lead to an anisotropic $s-$wave gap with point nodes that would explain the observed $lambda(T)$.
We report combined experimental and theoretical analysis of superconductivity in CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$ (CaK1144) for $x=$0, 0.017 and 0.034. To obtain the superfluid density, $rho=left(1+Delta lambda_L(T)/lambda_L(0) right)^{-2}$, the tempe rature dependence of the London penetration depth, $Delta lambda_L (T)$, was measured by using tunnel-diode resonator (TDR) and the results agreed with the microwave coplanar resonator (MWR) with the small differences accounted for by considering a three orders of magnitude higher frequency of MWR. The absolute value of $lambda_L (T ll T_c) approx lambda_L(0)$ was measured by using MWR, $lambda_L (mathrm{5~K}) approx 170 pm 20$ nm, which agreed well with the NV-centers in diamond optical magnetometry that gave $lambda_L (mathrm{5~K}) approx 196 pm 12$ nm. The experimental results are analyzed within the Eliashberg theory, showing that the superconductivity of CaK1144 is well described by the nodeless s$_{pm}$ order parameter and that upon Ni doping the interband interaction increases.
We show on a few examples of one-band materials with spheroidal Fermi surfaces and anisotropic order parameters that anisotropies $gamma_H$ of the upper critical field and $gamma_lambda$ of the London penetration depth depend on temperature, the feat ure commonly attributed to multi-band superconductors. The parameters $gamma_H$ and $gamma_lambda$ may have opposite temperature dependencies or may change in the same direction depending on Fermi surface shape and on character of the gap nodes. For two-band systems, the behavior of anisotropies is affected by the ratios of bands densities of states, Fermi velocities, anisotropies, and order parameters. We investigate in detail the conditions determining the directions of temperature dependences of the two anisotropy factors.
The newly discovered superconductors A2Cr3As3 (A = K, Rb, Cs), with a quasi-one-dimensional crystal structure have attracted considerable interest. The crystal structure consists of double-walled tubes of [Cr3As3]^(2-) that extend along the c-axis. P reviously we reported measurements of the change in London penetration depth of polycrystalline samples of K2Cr3As3 using a tunnel diode oscillator based technique, which show a linear temperature dependence at low temperatures, giving evidence for line nodes in the superconducting gap. Here we report similar measurements of the penetration depth for polycrystalline Rb2Cr3As3 and several single crystals of K2Cr3As3, prepared by two different research groups. The single crystal measurements show similar behavior to polycrystalline samples down to 0.9-1.2 K, where a downturn is observed in the frequency shift for all single crystal samples. These results give further evidence for nodal superconductivity in K2Cr3As3, which indicates that the superconducting pairing state is unconventional. The different low temperature behavior observed in samples which have deteriorated after being exposed to air, emphasises that it is necessary to properly handle the samples prior to being measured because the A2Cr3As3 compounds are extremely air sensitive and evidence for nodal superconductivity from penetration depth measurements is only observed in the samples which display a sharp superconducting transition. Therefore further work is required to improve the quality of single crystals and to identify the origin of the downturn.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا