ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact quantization and analytic continuation

133   0   0.0 ( 0 )
 نشر من قبل Barak Gabai
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we give a streamlined derivation of the exact quantization condition (EQC) on the quantum periods of the Schrodinger problem in one dimension with a general polynomial potential, based on Wronskian relations. We further generalize the EQC to potentials with a regular singularity, describing spherical symmetric quantum mechanical systems in a given angular momentum sector. We show that the thermodynamic Bethe ansatz (TBA) equations that govern the quantum periods undergo nontrivial monodromies as the angular momentum is analytically continued between integer values in the complex plane. The TBA equations together with the EQC are checked numerically against Hamiltonian truncation at real angular momenta and couplings, and are used to explore the analytic continuation of the spectrum on the complex angular momentum plane in examples.



قيم البحث

اقرأ أيضاً

86 - Gerald V. Dunne 2021
The heat kernel expansion on even-dimensional hyperbolic spaces is asymptotic at both short and long times, with interestingly different Borel properties for these short and long time expansions. Resummations in terms of incomplete gamma functions pr ovide accurate extrapolations and analytic continuations, relating the heat kernel to the Schrodinger kernel, and the heat kernel on hyperbolic space to the heat kernel on spheres. For the diagonal heat kernel there is also a duality between short and long times which mixes the scalar and spinor heat kernels.
We develop an approach to the study of Coulomb branch operators in 3D $mathcal{N}=4$ gauge theories and the associated quantization structure of their Coulomb branches. This structure is encoded in a one-dimensional TQFT subsector of the full 3D theo ry, which we describe by combining several techniques and ideas. The answer takes the form of an associative and noncommutative star product algebra on the Coulomb branch. For `good and `ugly theories (according to the Gaiotto-Witten classification), we also exhibit a trace map on this algebra, which allows for the computation of correlation functions and, in particular, guarantees that the star product satisfies a truncation condition. This work extends previous work on abelian theories to the non-abelian case by quantifying the monopole bubbling that describes screening of GNO boundary conditions. In our approach, monopole bubbling is determined from the algebraic consistency of the OPE. This also yields a physical proof of the Bullimore-Dimofte-Gaiotto abelianization description of the Coulomb branch.
We propose a mechanism for confinement: analytic continuation beyond infinite coupling in the space of the coupling constant. The analytic continuation is realized by renormalization group flows from the weak to the strong coupling regime. We demonst rate this mechanism explicitly for the mass gap in two-dimensional sigma models in the large $N$ limit. Our analysis suggests that the conventional analysis of the operator product expansion in itself does not necessarily guarantee the existence of a classical solution corresponding to renormalons. We discuss how the renormalon puzzle may be resolved by the analytic continuation beyond infinite coupling.
Knotted solutions to electromagnetism are investigated as an independent subsector of the theory. We write down a Lagrangian and a Hamiltonian formulation of Batemans construction for the knotted electromagnetic solutions. We introduce a general defi nition of the null condition and generalize the construction of Maxwells theory to massless free complex scalar, its dual two form field, and to a massless DBI scalar. We set up the framework for quantizing the theory both in a path integral approach, as well as the canonical Dirac method for a constrained system. We make several observations about the semi-classical quantization of systems of null configurations.
The symplectic analysis for the four dimensional Pontryagin and Euler invariants is performed within the Faddeev-Jackiw context. The Faddeev-Jackiw constraints and the generalized Faddeev-Jackiw brackets are reported; we show that in spite of the Pon tryagin and Euler classes give rise the same equations of motion, its respective symplectic structures are different to each other. In addition, a quantum state that solves the Faddeev-Jackiw constraints is found, and we show that the quantum states for these invariants are different to each other. Finally, we present some remarks and conclusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا