ﻻ يوجد ملخص باللغة العربية
The gravitational potentials of realistic galaxy models are in general non-integrable, in the sense that they admit orbits that do not have three independent isolating integrals of motion and are therefore chaotic. However, if chaotic orbits are a small minority in a stellar system, it is expected that they have negligible impact on the main dynamical properties of the system. In this paper we address the question of quantifying the importance of chaotic orbits in a stellar system, focusing, for simplicity, on axisymmetric systems. Chaotic orbits have been found in essentially all (non-Stackel) axisymmetric gravitational potentials in which they have been looked for. Based on the analysis of the surfaces of section, we add new examples to those in the literature, finding chaotic orbits, as well as resonantly trapped orbits among regular orbits, in Miyamoto-Nagai, flattened logarithmic and shifted Plummer axisymmetric potentials. We define the fractional contributions in mass of chaotic ($xi_{rm c}$) and resonantly trapped ($xi_{rm t}$) orbits to a stellar system of given distribution function, which are very useful quantities, for instance in the study of the dispersal of stellar streams of galaxy satellites. As a case study, we measure $xi_{rm c}$ and $xi_{rm t}$ in two axisymmetric stellar systems obtained by populating flattened logarithmic potentials with the Evans ergodic distribution function, finding $xi_{rm c}sim 10^{-4}-10^{-3}$ and $xi_{rm t}sim 10^{-2}-10^{-1}$.
The center of the Milky Way hosts a massive black hole. The observational evidence for its existence is overwhelming. The compact radio source Sgr A* has been associated with a black hole since its discovery. In the last decade, high-resolution, near
Modelling the chaotic states in terms of the Gaussian Orthogonal Ensemble of random matrices (GOE), we investigate the interaction of the GOE with regular bound states. The eigenvalues of the latter may or may not be embedded in the GOE spectrum. We
We consider the motion of a particle subjected to the constant gravitational field and scattered inelasticaly by hard boundaries which possess the shape of parabola, wedge, and hyperbola. The billiard itself performs oscillations. The linear dependen
We present the theoretical framework to efficiently solve the Jeans equations for multi-component axisymmetric stellar systems, focusing on the scaling of all quantities entering them. The models may include an arbitrary number of stellar distributio
We report integrated orbital fits for the inner regular moons of Neptune based on the most complete astrometric data set to date, with observations from Earth-based telescopes, Voyager 2, and the Hubble Space Telescope covering 1981-2016. We summariz