ﻻ يوجد ملخص باللغة العربية
Let $W$ be a smooth test function with compact support in $(0,infty)$. Conditional on the Generalized Riemann Hypothesis for Hecke $L$-functions over $mathbb{Q}(omega)$, we prove that $$sum_{p equiv 1 pmod{3}} frac{1}{2 sqrt{p}} cdot Big ( sum_{x pmod{p}} e^{2pi i x^3 / p} Big ) W Big ( frac{p}{X} Big ) sim frac{(2pi)^{2/3}}{3 Gamma(tfrac 23)} int_{0}^{infty} W(x) x^{-1/6} dx cdot frac{X^{5/6}}{log X},$$ as $X rightarrow infty$ and $p$ runs over primes. This explains a well-known numerical bias in the distribution of cubic Gauss sums first observed by Kummer in 1846 and confirms (conditionally on the Generalized Riemann Hypothesis) a conjecture of Patterson from 1978. There are two important byproducts of our proof. The first is an explicit level aspect Voronoi summation formula for cubic Gauss sums, extending computations of Patterson and Yoshimoto. Secondly, we show that Heath-Browns cubic large sieve is sharp up to factors of $X^{o(1)}$ under the Generalized Riemann Hypothesis. This disproves the popular belief that the cubic large sieve can be improved. An important ingredient in our proof is a dispersion estimate for cubic Gauss sums. It can be interpreted as a cubic large sieve with correction by a non-trivial asymptotic main term. This estimate relies on the Generalized Riemann Hypothesis, and is one of the fundamental reasons why our result is conditional.
In the past two decades, many researchers have studied {it index $2$} Gauss sums, where the group generated by the characteristic $p$ of the underling finite field is of index $2$ in the unit group of ${mathbb Z}/m{mathbb Z}$ for the order $m$ of the
Let K be a cubic number field. In this paper, we study the Ramanujan sums c_{J}(I), where I and J are integral ideals in O_{K}. The asymptotic behaviour of sums of c_{J}(I) over both I and J is investigated.
We establish an analogue of the classical Polya-Vinogradov inequality for $GL(2, F_p)$, where $p$ is a prime. In the process, we compute the `singular Gauss sums for $GL(2, F_p)$. As an application, we show that the collection of elements in $GL(2,Z)
By using various expansions of the parametric digamma function and the method of residue computations, we study three variants of the linear Euler sums, related Hoffmans double $t$-values and Kaneko-Tsumuras double $T$-values, and establish several s
We prove Manins conjecture over imaginary quadratic number fields for a cubic surface with a singularity of type E_6.