ﻻ يوجد ملخص باللغة العربية
In [5], Hjorth proved that for every countable ordinal $alpha$, there exists a complete $mathcal{L}_{omega_1,omega}$-sentence $phi_alpha$ that has models of all cardinalities less than or equal to $aleph_alpha$, but no models of cardinality $aleph_{alpha+1}$. Unfortunately, his solution does not yield a single $mathcal{L}_{omega_1,omega}$-sentence $phi_alpha$, but a set of $mathcal{L}_{omega_1,omega}$-sentences, one of which is guaranteed to work. It was conjectured in [9] that it is independent of the axioms of ZFC which of these sentences has the desired property. In the present paper, we prove that this conjecture is true. More specifically, we isolate a diagonalization principle for functions from $omega_1$ to $omega_1$ which is a consequence of the Bounded Proper Forcing Axiom (BPFA) and then we use this principle to prove that Hjorths solution to characterizing $aleph_2$ in models of BPFA is different than in models of CH. In addition, we show that large cardinals are not needed to obtain this independence result by proving that our diagonalization principle can be forced over models of CH.
In [FHK13], the authors considered the question whether model-existence of $L_{omega_1,omega}$-sentences is absolute for transitive models of ZFC, in the sense that if $V subseteq W$ are transitive models of ZFC with the same ordinals, $varphiin V$ a
We continue the study of the virtual large cardinal hierarchy, initiated in Gitman and Schindler (2018), by analysing virtu
Let ${mathfrak C}$ be a monster model of an arbitrary theory $T$, $bar alpha$ any tuple of bounded length of elements of ${mathfrak C}$, and $bar c$ an enumeration of all elements of ${mathfrak C}$. By $S_{bar alpha}({mathfrak C})$ denote the compact
A function f from reals to reals (f:R->R) is almost continuous (in the sense of Stallings) iff every open set in the plane which contains the graph of f contains the graph of a continuous function. Natkaniec showed that for any family F of continuu
We give a valuation theoretic characterization for a real closed field to be recursively saturated. Our result extends the characterization of Harnik and Ressayre cite{hr} for a divisible ordered abelian group to be recursively saturated.