ﻻ يوجد ملخص باللغة العربية
The purpose of the present article is to show how the modular method together with different techniques can be used to prove non-existence of primitive non-trivial solutions of the equation $x^2+dy^6=z^p$ for square-free values $1 le d le 20$ following the approach of [PT]. The main innovation is to make use of the symplectic argument over ramified extensions to discard solutions, together with a multi-Frey approach to deduce large image of Galois representations.
Suppose that $n$ is a positive integer. In this paper, we show that the exponential Diophantine equation $$(n-1)^{x}+(n+2)^{y}=n^{z}, ngeq 2, xyz eq 0$$ has only the positive integer solutions $(n,x,y,z)=(3,2,1,2), (3,1,2,3)$. The main tools on the p
In this paper, we prove that the only primitive solutions of the equation $a^2+3b^6=c^n$ for $ngeq 3$ are $(a,b,c,n)=(pm 47,pm 2,pm 7,4)$. Our proof is based on the modularity of Galois representations of $mathbb Q$-curves and the work of Ellenberg f
In this paper, we determine the primitive solutions of the Diophantine equation $(x-d)^2+x^2+(x+d)^2=y^n$ when $ngeq 2$ and $d=p^b$, $p$ a prime and $pleq 10^4$. The main ingredients are the characterization of primitive divisors on Lehmer sequences
Let $E$ be an elliptic curve over $Q$. It is well known that the ring of endomorphisms of $E_p$, the reduction of $E$ modulo a prime $p$ of ordinary reduction, is an order of the quadratic imaginary field $Q(pi_p)$ generated by the Frobenius element
We solve the diophantine equations x^4 + d y^2 = z^p for d=2 and d=3 and any prime p>349 and p>131 respectively. The method consists in generalizing the ideas applied by Frey, Ribet and Wiles in the solution of Fermats Last Theorem, and by Ellenberg