ترغب بنشر مسار تعليمي؟ اضغط هنا

The fate of Landau levels under $delta$-interactions

444   0   0.0 ( 0 )
 نشر من قبل Markus Holzmann
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the self-adjoint Landau Hamiltonian $H_0$ in $L^2(mathbb{R}^2)$ whose spectrum consists of infinitely degenerate eigenvalues $Lambda_q$, $q in mathbb{Z}_+$, and the perturbed operator $H_upsilon = H_0 + upsilondelta_Gamma$, where $Gamma subset mathbb{R}^2$ is a regular Jordan $C^{1,1}$-curve, and $upsilon in L^p(Gamma;mathbb{R})$, $p>1$, has a constant sign. We investigate ${rm Ker}(H_upsilon -Lambda_q)$, $q in mathbb{Z}_+$, and show that generically $$0 leq {rm dim , Ker}(H_upsilon -Lambda_q) - {rm dim , Ker}(T_q(upsilon delta_Gamma)) < infty,$$ where $T_q(upsilon delta_Gamma) = p_q (upsilon delta_Gamma)p_q$, is an operator of Berezin-Toeplitz type, acting in $p_q L^2(mathbb{R}^2)$, and $p_q$ is the orthogonal projection on ${rm Ker},(H_0 -Lambda_q)$. If $upsilon eq 0$ and $q = 0$, we prove that ${rm Ker},(T_0(upsilon delta_Gamma)) = {0}$. If $q geq 1$, and $Gamma = mathcal{C}_r$ is a circle of radius $r$, we show that ${rm dim , Ker} (T_q(delta_{mathcal{C}_r})) leq q$, and the set of $r in (0,infty)$ for which ${rm dim , Ker}(T_q(delta_{mathcal{C}_r})) geq 1$, is infinite and discrete.



قيم البحث

اقرأ أيضاً

We demonstrate how to approximate one-dimensional Schrodinger operators with $delta$-interaction by a Neumann Laplacian on a narrow waveguide-like domain. Namely, we consider a domain consisting of a straight strip and a small protuberance with room- and-passage geometry. We show that in the limit when the perpendicular size of the strip tends to zero, and the room and the passage are appropriately scaled, the Neumann Laplacian on this domain converges in (a kind of) norm resolvent sense to the above singular Schrodinger operator. Also we prove Hausdorff convergence of the spectra. In both cases estimates on the rate of convergence are derived.
In this article Dirac operators $A_{eta, tau}$ coupled with combinations of electrostatic and Lorentz scalar $delta$-shell interactions of constant strength $eta$ and $tau$, respectively, supported on compact surfaces $Sigma subset mathbb{R}^3$ are s tudied. In the rigorous definition of these operators the $delta$-potentials are modelled by coupling conditions at $Sigma$. In the proof of the self-adjointness of $A_{eta, tau}$ a Krein-type resolvent formula and a Birman-Schwinger principle are obtained. With their help a detailed study of the qualitative spectral properties of $A_{eta, tau}$ is possible. In particular, the essential spectrum of $A_{eta, tau}$ is determined, it is shown that at most finitely many discrete eigenvalues can appear, and several symmetry relations in the point spectrum are obtained. Moreover, the nonrelativistic limit of $A_{eta, tau}$ is computed and it is discussed that for some special interaction strengths $A_{eta, tau}$ is decoupled to two operators acting in the domains with the common boundary $Sigma$.
We consider the self-adjoint Schrodinger operator in $L^2(mathbb{R}^d)$, $dgeq 2$, with a $delta$-potential supported on a hyperplane $Sigmasubseteqmathbb{R}^d$ of strength $alpha=alpha_0+alpha_1$, where $alpha_0inmathbb{R}$ is a constant and $alpha_ 1in L^p(Sigma)$ is a nonnegative function. As the main result, we prove that the lowest spectral point of this operator is not smaller than that of the same operator with potential strength $alpha_0+alpha_1^*$, where $alpha_1^*$ is the symmetric decreasing rearrangement of $alpha_1$. The proof relies on the Birman-Schwinger principle and the reduction to an analogue of the P{o}lya-SzegH{o} inequality for the relativistic kinetic energy in $mathbb{R}^{d-1}$.
We study the spectrum of two kinds of operators involving a conical geometry: the Dirichlet Laplacian in conical layers and Schrodinger operators with attractive $delta$-interactions supported by infinite cones. Under the assumption that the cones ha ve smooth cross-sections, we prove that such operators have infinitely many eigenvalues accumulating below the threshold of the essential spectrum and we express the accumulation rate in terms of the eigenvalues of an auxiliary one-dimensional operator with a curvature-induced potential.
We consider a waveguide-like domain consisting of two thin straight tubular domains connected through a tiny window. The perpendicular size of this waveguide is of order $varepsilon$. Under the assumption that the window is appropriately scaled we pr ove that the Neumann Laplacian on this domain converges in (a kind of) norm resolvent sense as $varepsilonto 0$ to a one-dimensional Schrodinger operator corresponding to a $delta$-interaction of a non-negative strength. We estimate the rate of this convergence, also we prove the convergence of spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا