ترغب بنشر مسار تعليمي؟ اضغط هنا

Circumneutral concentrated ammonium acetate solution as water-in-salt electrolyte

145   0   0.0 ( 0 )
 نشر من قبل Francesca Soavi Prof
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The exponentially growing market of electrochemical energy storage devices requires substitution of flammable, volatile, and toxic electrolytes. The use of Water in salt solutions (WiSE) regarded as green electrolyte might be of interest thanks to an association of key features such as high safety, low cost, wide electrochemical stability, and high ionic conductivity. Here, we report comprehensive chemical-physical study of circumneutral WiSE based on ammonium acetate so as to investigate application in electrochemical energy storage systems, with focus on the effect of pH, density, viscosity, conductivity, and the ESW with salt concentration ranging from 1 to 30 mol/kg . Data are reported and discussed with respect to the structure of the solutions investigated by complemental IR and molecular dynamic study. The study is addressed through the showcase of an asymmetric supercapacitor based on Argan shell-derived carbon electrodes tested at temperatures ranging from -10 to 80 {deg}C.

قيم البحث

اقرأ أيضاً

Adding salt to water at ambient pressure affects its thermodynamic properties. At low salt concentration, anomalies such as the density maximum are shifted to lower temperature, while at large enough salt concentration they cannot be observed any mor e. Here we investigate the effect of salt on an anomaly recently observed in pure water at negative pressure: the existence of a sound velocity minimum along isochores. We compare experiments and simulations for an aqueous solution of sodium chloride with molality around $1.2,mathrm{mol,kg^{-1}}$, reaching pressures beyond $-100,mathrm{MPa}$. We also discuss the origin of the minima in the sound velocity and emphasize the importance of the relative position of the temperatures of sound velocity and density anomalies.
Achieving an active manipulation of colours has huge implications in optoelectronics, as colours engineering can be exploited in a number of applications, ranging from display to lightning. In the last decade, the synergy of the highly pure colours o f 1D photonic crystals, also known as Bragg stacks, with electro-tunable materials have been proposed as an interesting route to attain such a technologically relevant effect. However, recent works rely on the use of liquid electrolytes, which can pose issues in terms of chemical and environmental stability. Here, we report on the proof-of-concept of an electrolyte free and solution-processed electrochromic Bragg stack. We integrate an electro-responsive plasmonic metal oxide, namely indium tin oxide, in a 1D photonic crystal structure made of alternating layers of ITO and TiO2 nanoparticles. In such a device we observed 15 nm blue-shift upon application of an external bias (5 V), an effect that we attribute to the increase of ITO charge density arising from the capacitive charging at the metal oxide/dielectric interface and from the current flowing throughout the porous structure. Our data suggest that electrochromism can be attained in all-solid state systems by combining a judicious selection of the constituent materials with device architecture optimisation.
An analytical model of mechanical stress in a polymer electrolyte membrane (PEM) of a hydrogen/air fuel cell with porous Water Transfer Plates (WTP) is developed in this work. The model considers a mechanical stress in the membrane is a result of the cell load cycling under constant oxygen utilization. The load cycling causes the cycling of the inlet gas flow rate, which results in the membrane hydration/dehydration close to the gas inlet. Hydration/dehydration of the membrane leads to membrane swelling/shrinking, which causes mechanical stress in the constrained membrane. Mechanical stress results in through-plane crack formation. Thereby, the mechanical stress in the membrane causes mechanical failure of the membrane, limiting fuel cell lifetime. The model predicts the stress in the membrane as a function of the cell geometry, membrane material properties and operation conditions. The model was applied for stress calculation in GORE-SELECT.
The existence of passivating layers at the interfaces is a major factor enabling modern lithium-ion (Li-ion) batteries. Their properties determine the cycle life, performance, and safety of batteries. A special case is the solid electrolyte interphas e (SEI), a heterogeneous multi-component film formed due to the instability and subsequent decomposition of the electrolyte at the surface of the anode. The SEI acts as a passivating layer that hinders further electrolyte disintegration, which is detrimental to the Coulombic efficiency. In this work, we use first-principles simulations to investigate the kinetic and electronic properties of the interface between lithium fluoride (LiF) and lithium carbonate (Li$_2$CO$_3$), two common SEI components present in Li-ion batteries with organic liquid electrolytes. We find a coherent interface between these components that restricts the strain in each of them to below 3%. We find that the interface causes a large increase in the formation energy of the Frenkel defect, generating Li vacancies in LiF and Li interstitials in Li$_2$CO$_3$ responsible for transport. On the other hand, the Li interstitial hopping barrier is reduced from $0.3$ eV in bulk Li$_2$CO$_3$ to $0.10$ or $0.22$ eV in the interfacial structure considered, demonstrating the favorable role of the interface. Controlling these two effects in a heterogeneous SEI is crucial for maintaining fast ion transport in the SEI. We further perform Car-Parrinello molecular dynamics simulations to explore Li ion conduction in our interfacial structure, which reveal an enhanced Li ion diffusion in the vicinity of the interface. Understanding the interfacial properties of the multiphase SEI represents an important frontier to enable next-generation batteries.
The structure of dilute electrolyte solutions close to a surface carrying a spatially inhomogeneous surface charge distribution is investigated by means of classical density functional theory (DFT) within the approach of fundamental measure theory (F MT). For electrolyte solutions the influence of these inhomogeneities is particularly strong because the corresponding characteristic length scale is the Debye length, which is large compared to molecular sizes. Here a fully three-dimensional investigation is performed, which accounts explicitly for the solvent particles, and thus provides insight into effects caused by ion-solvent coupling. The present study introduces a versatile framework to analyze a broad range of types of surface charge heterogeneities even beyond the linear response regime. This reveals a sensitive dependence of the number density profiles of the fluid components and of the electrostatic potential on the magnitude of the charge as well as on details of the surface charge patterns at small scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا