ﻻ يوجد ملخص باللغة العربية
We evaluate the light baryonium sepectrum, viz. the baryon-antibaryon states, in the framework of QCD sum rules. The non-perturbative contributions up to dimension 12 are taken into account. Numerical results indicate that there might exist 8 possible light baryonium states, i.e. $p$-$bar{p}$, $Lambda$-$bar{Lambda}$, $Sigma$-$bar{Sigma}$, and $Xi$-$bar{Xi}$ with quantum numbers of $0^{-+}$ and $1^{--}$. For the $Lambda$-$bar{Lambda}$, $Sigma$-$bar{Sigma}$, and $Xi$-$bar{Xi}$ states, their masses are found above the corresponding dibaryon thresholds, while the masses of $p$-$bar{p}$ states are not. The possible baryonium decay modes are analyzed, which are hopefully measurable in BESIII, BELLEII, and LHCb experiments.
We suggest that the recently discovered charm-strange meson D_sJ(2632), with unusual properties, could be a cyptoexotic tetraquark baryonium state cdd_bars_bar. We predict other four narrow states, as Regge recurrences of D_sJ(2632), below the possible baryon-antibaryon thresholds.
For some time, the MILC Collaboration has been studying electromagnetic effects on light mesons. These calculations use fully dynamical QCD, but only quenched photons, which suffices to NLO in XPT. That is, the sea quarks are electrically neutral, wh
In this article, we construct the six-quark currents with the $J^P=0^+$, $0^-$, $1^+$ and $1^-$ to study the $Lambda_c$$Lambda_c$ dibaryon and $Lambda_c$$bar{Lambda}_c$ baryonium states via QCD sum rules. We consider the vacuum condensates up to dime
The quenched hadron spectrum in the continuum obtained with the Wilson quark action in recent simulations on the CP-PACS is presented. Results for the light quark masses and the QCD scale parameter are reported.
Energies for excited light baryons are computed in quenched QCD with a pion mass of 490 MeV. Operators used in the simulations include local operators and the simplest nonlocal operators that have nontrivial orbital structures. All operators are desi