ﻻ يوجد ملخص باللغة العربية
Protoplanetary disks are dust- and gas-rich structures surrounding protostars. Depending on the distance from the protostar, this dust is thermally processed to different degrees and accreted to form bodies of varying chemical compositions. The primordial accretion processes occurring in the early protoplanetary disk such as chondrule formation and metal segregation are not well understood. One way to constrain them is to study the morphology and composition of forsteritic grains from the matrix of carbonaceous chondrites. Here, we present high-resolution ptychographic X-ray nanotomography and multimodal chemical micro-tomography (X-ray diffraction and X-ray fluorescence) to reveal the early history of forsteritic grains extracted from the matrix of the Murchison CM2.5 chondrite. The 3D electron density maps revealed, at unprecedented resolution (64~nm), spherical inclusions containing Fe-Ni, very little silica-rich glass and void caps (i.e., volumes where the electron density is consistent with conditions close to vacuum) trapped in forsterite. The presence of the voids along with the overall composition, petrological textures, and shrinkage calculations is consistent with the grains experiencing one or more heating events with peak temperatures close to the melting point of forsterite ($sim$2100~K) and subsequently cooled and contracted, in agreement with chondrule-forming conditions.
The radial velocity (RV) is a basic physical quantity which can be determined through Doppler shift of the spectrum of a star. The precision of RV measurement depends on the resolution of the spectrum we used and the accuracy of wavelength calibratio
The thermal desorption of ammonia (NH$_3$) from single crystal forsterite (010) has been investigated using temperature-programmed desorption. The effect of defects on the desorption process has been probed by the use of a rough cut forsterite surfac
We present temperature programmed desorption (TPD) measurements of CO, CH$_4$, O$_2$ and CO$_2$ from the forsterite(010) surface in the sub-monolayer and multilayer coverage regimes. In the case of CO, CH$_4$ and O$_2$, multilayer growth begins prior
We present high resolution millimeter continuum imaging of the disc surrounding the young star CI Tau, a system hosting the first hot Jupiter candidate in a protoplanetary disc system. The system has extended mm emission on which are superposed three
Jets (fast collimated outflows) are claimed to be the main shaping agent of the most asymmetric planetary nebula (PNe) as they impinge on the circumstellar material at late stages of the asymptotic giant branch (AGB) phase. The first jet detected in