ﻻ يوجد ملخص باللغة العربية
Compressed sensing has become a widely accepted paradigm to construct high dimensional cluster expansion models used for statistical mechanical studies of atomic configuration in complex multicomponent crystalline materials. However, strict sampling requirements necessary to obtain minimal coherence measurements for compressed sensing to guarantee accurate estimation of model parameters are difficult and in some cases impossible to satisfy due to the inability of physical systems to access certain configurations. Nevertheless, the dependence of energy on atomic configuration can still be adequately learned without these strict requirements by using compressed sensing by way of coherent measurements using redundant function sets known as frames. We develop a particular frame constructed from the union of all occupancy-based cluster expansion basis sets. We illustrate how using this highly redundant frame yields sparse expansions of the configuration energy of complex oxide materials that are competitive and often surpass the prediction accuracy and sparsity of models obtained from standard cluster expansions.
The many surface reconstructions of (110)-oriented lanthanum--strontium manganite (La$_{0.8}$Sr$_{0.2}$MnO$_3$, LSMO) were followed as a function of the oxygen chemical potential ($mu_text{O}$) and the surface cation composition. Decreasing $mu_text{
A methodology for computing expansion basis functions using discrete harmonic modes is presented. The discrete harmonic modes are determined grain-by-grain for virtual polycrystals for which finite element meshes are available. The expansion weights
Graphene oxide membranes show exceptional molecular permeation properties, with a promise for many applications. However, their use in ion sieving and desalination technologies is limited by a permeation cutoff of ~9 Angstrom, which is larger than hy
Many stochastic complex systems are characterized by the fact that their configuration space doesnt grow exponentially as a function of the degrees of freedom. The use of scaling expansions is a natural way to measure the asymptotic growth of the con
We developed an inverse design framework enabling automated generation of stable multi-component crystal structures by optimizing the formation energies in the latent space based on reversible crystal graphs with continuous representation. It is demo